首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
CE can efficiently separate poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5–3 EDOT:PSS feed ratio (by weight) exhibiting 72–73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core‐shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants.  相似文献   

2.
In this work, the asymmetrical analog of 3,4‐ethylenedioxythiophene (EDOT), thieno[3,4‐b]‐1,4‐oxathiane (EOTT), was synthesized and chemically polymerized first in aqueous solution using poly(styrene sulfonic sodium) (PSS) as the polyelectrolyte to yield poly(thieno[3,4‐b]‐1,4‐oxathiane) (PEOTT)/PSS. As‐formed film exhibited low electrical conductivity (~10?4 S/cm). Alternatively, EOTT together with EDOT (in different molar ratio of 1:1 and 1:5) was copolymerized and the polymer poly(EOTT‐co‐EDOT)/PSS had electrical conductivity of 10?1 S/cm. After dimethyl sulfoxide (DMSO) treatment, the electrical conductivity was enhanced to 100 S/cm; however, the conductivity of the above homopolymer was reduced (~10?5 S/cm). Raman spectroscopy was used to interpret conductivity enhancement or reduction after DMSO treatment. The conductivity decrease of PEOTT/PSS compared to poly(EOTT‐co‐EDOT)/PSS may arise from the conformational change of PEOTT backbone from the quasi‐planar to the distorted planar mode induced by PSS/PSSH through ionic interaction. Kinetic studies revealed that the copolymer had high coloration efficiencies (375 cm2/C), low switching voltages (?0.8 to +0.6 V), decent contrast ratios (45%), moderate response time (1.0 s), excellent stability, and color persistence. An electrochromic device employing poly(3‐methylthiophene) and poly(EOTT‐co‐EDOT)/PSS as the anode and cathode materials was also studied. From these results, poly(EOTT‐co‐EDOT)/PSS would be a promising candidate material for organic electronics. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2285–2297  相似文献   

3.
The interaction between poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and cellulosic fibers was characterized in order to obtain further understanding of the conductivity properties of the modified cellulosic fiber material. Microcrystalline cellulose (MCC) was used as a model surface to study the adsorption behavior at various pH and salt concentrations, while samples of low-conductivity paper, normally used for the production of electrical insulation papers, were dipped into PEDOT:PSS dispersion and air-dried for X-ray photoelectron spectroscopy (XPS) studies. The results showed a strong interaction between the MCC and PEDOT:PSS, which implied a broad molecular distribution of the conducting polymer. With increasing pH, less amount of the conducting polymer was adsorbed whereas the amount adsorbed passed through a maximum value with varying salt concentration. Zeta potential measurement and polyelectrolyte titration were used to determine the surface charge of both suspended MCC particles and dispersed PEDOT:PSS at various pH levels and salt concentrations. Dip-coated paper samples exhibited two peaks in the S(2p) XPS spectra at 168–169 and 164–165 eV which correspond to the sulfur signals of sulfonate (in PSS) and in thiophene (in PEDOT), respectively. It was found that the PEDOT:PSS with a ratio of 1:2.5 was adsorbed more in the base paper than that with a ratio of 1:6. The PEDOT:PSS ratio on the surface of the cellulosic material was higher than that in the bulk liquid for all samples. The results indicated that PEDOT was preferentially adsorbed rather than PSS. The degree of washing of the conducting polymer did not significantly affect the PEDOT enhancement on the surface.  相似文献   

4.
Carbon nanotubes (CNTs), either single wall carbon nanotubes (SWNTs) or multiwall carbon nanotubes (MWNTs), can improve the thermoelectric properties of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT?:?PSS), but it requires addition of 30-40 wt% CNTs. We report that the figure of merit (ZT) value of PEDOT?:?PSS thin film for thermoelectric property is increased about 10 times by incorporating 2 wt% of graphene. PEDOT?:?PSS thin films containing 1, 2, 3 wt% graphene are prepared by solution spin coating method. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses identified the strong π-π interactions which facilitated the dispersion between graphene and PEDOT?:?PSS. The uniformly distributed graphene increased the interfacial area by 2-10 times as compared with CNT based on the same weight. The power factor and ZT value of PEDOT?:?PSS thin film containing 2 wt% graphene was 11.09 μW mK(-2) and 2.1 × 10(-2), respectively. This enhancement arises from the facilitated carrier transfer between PEDOT?:?PSS and graphene as well as the high electron mobility of graphene (200,000 cm(2) V(-1) s(-1)). Furthermore the porous structure of the thin film decreases the thermal conductivity resulting in a high ZT value, which is higher by 20% than that for a PEDOT?:?PSS thin film containing 35 wt% SWNTs.  相似文献   

5.
Nanocomposites based on poly(ethylene terephthalate) (PET) and expanded graphite (EG) have been prepared by in situ polymerization. Morphology of the nanocomposites has been examined by electronic microscopy. The relationship between the preparation method, morphology, and electrical conductivity was studied. Electronic microscopy images reveal that the nanocomposites exhibit well dispersed graphene platelets. The incorporation of EG to the PET results in a sharp insulator‐to‐conductor transition with a percolation threshold (?c) as low as 0.05 wt %. An electrical conductivity of 10?3 S/cm was achieved for 0.4 wt % of EG. The low percolation threshold and relatively high electrical conductivity are attributed to the high aspect ratio, large surface area, and uniform dispersion of the EG sheets in PET matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
We report the development of a solid polymer electrolyte film from hydrogen bonding layer-by-layer (LBL) assembly that outperforms previously reported LBL assembled films and approaches battery integration capability. Films were fabricated by alternating deposition of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) layers from aqueous solutions. Film quality benefits from increasing PEO molecular weight even into the 10(6) range due to the intrinsically low PEO/PAA cross-link density. Assembly is disrupted at pH near the PAA ionization onset, and a potential mechanism for modulating PEO:PAA ratio within assembled films by manipulating pH is discussed. Ionic conductivity of 5 x 10(-5) S/cm is achievable after short exposure to 100% relative humidity (RH) for plasticization. Adding free ions by exposing PEO/ PAA films to lithium salt solutions enhanced conductivity to greater than 10(-5) S/cm at only 52% RH and tentatively greater than 10(-4) S/cm at 100% RH. The excellent stability of PEO/PAA films even when exposed to 1.0 M salt solutions led to an exploration of LBL assembly with added electrolyte present in the adsorption step. Fortuitously, the modulation of PEO/PAA assembly by ionic strength is analogous to that of electrostatic LBL assembly and can be attributed to electrolyte interactions with PEO and PAA. Dry ionic conductivity was enhanced in films assembled in the presence of salt as compared to films that were merely exposed to salt after assembly, implying different morphologies. These results reveal clear directions for the evolution of these promising solid polymer electrolytes into elements appropriate for electrochemical power storage and generation applications.  相似文献   

7.
Silver nanoparticles were formed in situ along with poly(2,5‐dimethoxyaniline) (PDMA) in an interconnected network matrix (reactor), comprising the electronic conductive polymer, PDMA, and a polyelectrolyte, poly(styrene sulfonic acid) (PSS), through the simultaneous reduction of Ag+ ions and polymerization of 2,5‐dimethoxyaniline. In situ ultraviolet‐visible spectroscopy showed that peaks corresponding to the plasmon resonance of silver nanoparticles at 411 nm and the polaronic transition of PDMA at 438 nm provided evidences for the simultaneous formation of silver nanoparticles and PDMA. Transmission electron microscopy and size distribution analysis revealed the presence of spherical silver nanoparticles with an average diameter of 12 nm in the composite. X‐ray photoelectron spectroscopy showed that the amine units in PDMA changed to imine units upon the formation of silver nanoparticles. A comprehensive mechanism for the formation of the PDMA‐PSS‐Ag nanocomposite is proposed. A 10‐fold increase in the conductivity was noticed for the PDMA–PSS–Ag nanocomposite (1 S/cm) in comparison with the PDMA–PSS composite (0.1 S/cm). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3843–3852, 2006  相似文献   

8.
New polyimide (PI) nanocomposites containing two different amounts of MWCNT (PI/MWCNT) were prepared via in situ polymerization technique. Transmission electron microscopy showed that MWCNT was exfoliated in the polymer matrix, resulting in well-dispersed morphologies at 1 and 3 mass% MWCNT contents. The effects of multiwalled carbon nanotubes (MWCNT) on the thermal and flammability properties of new PI derived from 1,3-bis[4,4′-aminophenoxy]propane and biphenyl dianhydride were investigated by thermogravimetric analysis (TG) in nitrogen and air atmosphere, differential scanning calorimetry, and microscale combustion calorimeter (MCC). The PI/MWCNT nanocomposites were electrically conductive with maximum conductivity obtained at 3 mass% MWCNT, which is favorable for many potential applications. TG results showed that the addition of MWCNT resulted in a substantial increase of the thermal stability and char yields of the nanocomposites compared to those of the neat PI. Flame retardancy of the nanocomposites was significantly improved in the presence of MWCNT.  相似文献   

9.
聚3-辛基噻吩/MWNTs复合材料的导电性能研究   总被引:2,自引:0,他引:2  
采用在氯仿溶液中超声共混, 制备聚3-辛基噻吩(P3OT)和多壁碳纳米管(MWNTs)复合材料. 当MWNTs掺杂量为3%时复合材料的电导率为1.43 S•m-1, 达到纯MWNTs的电导率水平. 用FTIR光谱, TG, UV-Vis光谱, XPS和FESEM进行研究分析, 认为MWNTs的离域电子与P3OT主链上的π电子之间形成π-π共轭, 增加了P3OT主链的有效共轭度, 被掺杂的P3OT具有很高的电导率, 提高了复合材料的导电性能. MWNTs与被掺杂的P3OT组成相对独立的导体单元, 对复合材料的导电网络形成起着主要作用.  相似文献   

10.
Herein, a facile and noncovalent modification for multiwalled carbon nanotubes (MWNTs) is adopted by the self-polymerization of dopamine (DOPA). And, the polydopamine-coated MWNTs (D-MWNTs) were further incorporated into poly(l-lactide) (PLLA) matrix through the solvent-casting method. It is found that the D-MWNTs tend to be well dispersed in PLLA matrix than the pristine MWNTs and the D-MWNTs that can act as heterogeneous nucleators that evidently affect the morphology and crystallization behavior of PLLA. In addition, the significant improvement of dispersion and the interface interaction of PLLA/D-MWNTs, via dopamine coating between the MWNTs and PLLA matrix, results in enhanced mechanical and thermal properties and electrical conductivity. This facile methodology is believed to afford broad application potential in carbon nanotubes (CNTs)-based polymer nanocomposites.  相似文献   

11.
In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in‐depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four‐point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Yu Han 《Soft Materials》2018,16(1):31-36
As a representing conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely employed in organic electronics. However, the electrical conductivity for pristine PEDOT:PSS is only between 0.1 and 0.5 S/cm. In order to enhance the conductivity, the silver nanowires (Ag NWs) were synthesized to dope PEDOT:PSS. It was found the electrical conductivity of PEDOT:PSS was improved to about 200 S/cm with Ag NWs. When double-wall carbon nanotube (DWCNT) was employed together with Ag NWs, the electrical conductivity was further improved to over 2800 S/cm. We proposed the synergistic working model between Ag NWs and CNTs for such enhancement. In this work, UV-vis-NIR spectra and SEM images were also employed to investigate the mechanism of electrical conductivity enhancement.  相似文献   

13.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

14.
Polymer‐based nanocomposites with good dielectric behavior have engrossed research devotion because of their distinctive benefits in electronic applications. An in situ synthetic process for the polybenzimidazole functionalized graphene oxide (GBI) and its nanocomposite with poly(vinylidene fluoride) (PVDF) is described. GBI shows good dispersion in the bulk PVDF matrix implying a strong interaction of polybenzimidazole with PVDF as evident from morphological and FTIR studies. A gradual increment of GBI in PVDF increases its piezoelectric β‐polymorph formation with a maximum of 73% for 10 wt % GBI in PVDF (GBF10) which also exhibits highest thermal stability. An exhaustive study of frequency dependent electrical properties of GBF10 indicates significantly higher dielectric constant (61), low dielectric loss (0.42), and low AC conductivity value of 1.17 × 10?10 S/cm at 100 Hz which are the key properties of a suitable capacitor. GBF10 also shows hydrophobic behavior (water uptake 2.89%) and low swelling ratio (1.143), providing an opportunity to use the composite film in fuel cell application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 189–201  相似文献   

15.
Novel ionomers based on polybenzimidazole block sulfonated poly(arylene ether sulfone) show excellent thermal properties. The ionic aggregation of sulfonic acid groups leads to well-developed phase separated morphology and thus high proton conductivity at wide humidity range, up to 65 mS cm(-1) at 90% relative humidity.  相似文献   

16.
Exfoliated graphite has been synthesized by first synthesizing H2SO4 intercalated compound in a H2O2‐H2SO4 mixture, followed by exfoliation under microwave irradiation. Poly(arylene disulfide)/graphite nanocomposites were then fabricated by absorbing cyclic(arylene disulfide) oligomers into the pores of exfoliated graphite. Subsequently, the nanocomposite precursor was subjected to heat treatment to carry out the in situ ring‐opening polymerization of the oligomers via free radical mechanism. The as‐prepared nanocomposite exhibited a exfoliated nanostructure as evidenced by transmission electron microscopy (TEM) observation. The nanocomposite with a very small amount of graphite, 5 wt%, possesses a highly electrical conductivity of 4 S/cm, therefore, many applications can be found as conductive materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Summary: Carboxylated multiwalled carbon nanotubes (MWNTs) were assembled with poly(allylamine hydrochloride) (PAH) onto decomposable colloidal particles, to subsequently yield hollow microcapsules after core removal. A sandwich structure with MWNTs layer embedded in poly(styrenesulfonate sodium salt) (PSS)/PAH multilayers was designed and constructed on melamine formaldehyde particles. Transmission electron microscopy and confocal microscopy revealed the hollow structure and good dispersity of the resultant microcapsules. The MWNTs were uniformly distributed on the capsule walls.

TEM images of (PSS/PAH)5/MWNT/(PAH/PSS)2 microcapsules templated on MF microparticles, after core decomposition (main). They still preserve their continuous and intact structure with no signs of rupture. Inset: magnified surface.  相似文献   


18.
We report on the investigation of the surface morphology and DC conductivity of nanostructured layer-by-layer (LbL) films from nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with either multi-walled carbon nanotubes (MWNTs/NiTsPc) or multi-walled carbon nanotubes dispersed in chitosan (MWNTs+Ch/NiTsPc). We have explored the surface morphology of the films by using fractal concepts and dynamic scale laws. The MWNTs/NiTsPc LbL films were found to have a fractal dimension of ca. 2, indicating a quasi Euclidean surface. MWNTs+Ch/NiTsPc LbL films are described by the Lai-Das Sarma-Villain (LDV) model, which predicts the deposition of particles and their subsequent relaxation. An increase in the wetting contact angle of MWNTs+Ch/NiTsPc LbL films was observed, as compared with MWNTs/NiTsPc LbL films, which presented an increase in the fractal dimension of the first system. Room temperature conductivities were found be ca. 0.45 S/cm for MWNTs/NiTsPc and 1.35 S/cm for MWNTs+Ch/NiTsPc.  相似文献   

19.
The mechanical properties of multiwall carbon nanotube (MWNT)/poly(methyl methacrylate) (PMMA) nanocomposites were studied as a function of nanotube orientation, length, concentration, and type. Orientation and dispersion were assessed by electron microscopy. A processing parameter study revealed the robust nature of fabricating nanotube/PMMA nanocomposites. An optimal set of extrusion conditions was found for minimizing the aggregate size in single‐wall carbon nanotube (SWNT)/PMMA nanocomposites; this set was also used for the fabrication of the MWNT/PMMA composites. Good dispersion was achieved for MWNTs in PMMA at 0.1–10 wt % loading levels (with the best dispersions at the lower loading levels). The orientation of MWNTs in PMMA proved to be the only way to substantially toughen the nanocomposite. A level of 1 wt % MWNTs in PMMA (oriented nanocomposite) exhibited the largest increase in tensile toughness with a 170% improvement over oriented PMMA. Increases in the modulus and yield strength were not nearly as pronounced (and occurred only at the highest loading of MWNTs, which was 10 wt %) with increases of 38 and 25%, respectively. A failure mechanism was proposed in which orientation of the MWNTs (normal to the direction of craze propagation and crack development) enabled them to toughen the brittle PMMA by bridging cracks that developed (via craze precursors) during the tensile test. None of the nanotube/PMMA composites showed mechanical properties close to the values expected from simple rule of mixture and orientation considerations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2690–2702, 2004  相似文献   

20.
An organic solvent soluble and high electrical conductivity, for example, 55.43 S/cm, polyaniline (PANI), was synthesized by a novel method. In this two steps process, a noncovalent approach was initially developed by functionalization of multiwalled carbon nanotubes (MWNTs) using calcium lignosulfonate (LsCa) via self‐assembly to result MWNTs‐LsCa. Then, the MWNT‐LsCa was employed as a template to lead anilinium monomers directly aligned on the surface to start the polymerization of PANI. The noncovalent modification of MWNTs avoided their agglomeration effectively to allow them doped in PANI at the molecular level. The obtained novel PANI/MWNTs‐LsCa presented excellent solubility and high conductivity. The recorded scanning electron microscopy photographs revealed that the MWNTs‐LsCa was wrapped with PANI chains that caused the crystal orientation improvement. In this article, a related scheme on resulting in the high conductivity of PANI/MWNTs‐LsCa was showed and described. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2036–2046, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号