首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Vanadium oxides (V2O5) have been intensely investigated for advanced supercapacitors due to its extensive multifunctional properties of typical layered structure and multiple stable oxide states of vanadium in its oxides. In this study, V2O5 nanosheets are synthesized via V2O5 xerogel solvothermal reaction in ethanol solvent at 200 °C for 12 h. The V2O5 nanosheets facilitate the easy accessibility of ions and can provide more area available for electrochemical reactions. We have achieved the highest specific capacitance of 298 F/g and good rate discharge for V2O5 electrodes. Notably, the capacitance still retains a high retention rate of 85% after 10,000 cycles at 200 mV/s. Furthermore, asymmetric supercapacitors is assembled based on V2O5 nanosheets and active carbon electrode, and a specific capacitance of 13.2 F/g is obtained at 1 A/g, with a energy density of 4.7 Wh/kg at a power density of 0.798 kW/kg and remains 2.28 Wh/kg at 7.992 kW/kg. Based on these results, the asymmetric supercapacitor exhibits a good cycle life with 77.3% capacitance retention after 3000 cycles. It suggests that the V2O5 nanosheets are promising electrode material for electrochemical supercapacitors.  相似文献   

2.
By controlling the electroplating time of solution containing Mn(Ac)2, the MnO2 nanosheets were self-assembled to the honeycomb structure and showed an excellent electrochemical performance in 1 mol/L Na2SO4 electrolyte. Via pairing with activated carbon as negative electrode, the capacitor could deliver a maximum energy density of 43.84 Wh/kg and a maximum power density of 6.62 kW/kg.  相似文献   

3.
A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for purpose of ameliorating the charge transfer and accumulation in the concentrated Li TFSI(lithium bis(trifluoromethane sulfonyl)imide) electrolyte. By tunning the feed ratio of comonomers, the porous nanosheet structure is endowed with a significant ion-adsorption surface area(1630 m2/g) and interconnected hierarchical porosity; meanwhile, high-level N/O dopants(N: 3.58 at%, O: 12.91 at%) incre...  相似文献   

4.
《中国化学快报》2020,31(9):2268-2274
Aqueous rechargeable zinc-ion batteries (ARZIBs) are expected to replace organic electrolyte batteries owing to its low price, safe and environmentally friendly characteristics. Herein, we fabricated vanadium-based Na1.25V3O8 nanosheets as a cathode material for ARZIBs, which present a high performance by electrochemical de-sodium at high voltage to form Na2V6O16 phase in the first cycle: high capacity of 390 mAh/g at 0.1 A/g, high rate performance (162 mAh/g at 10 A/g) and superior cycle stability (179 mAh/g with a high capacity retention of 88.2% of the maximum capacity after 2000 cycles). In addition, the cell exhibits a high energy density of 416.9 Wh/kg at 143.6 W/kg, suggesting great potential of the as-prepared Na1.25V3O8 nanosheets for ARZIBs  相似文献   

5.
《中国化学快报》2023,34(3):107593
Rational design of electrode meterials with unique core-shell nanostructures is of great significance for improving the electrochemical performance of supercapacitors. In this work, we prepare several CuCo2O4 @Ni-Co-S composite electrodes by a controllable hydrothermal and electrodeposition route. One-dimensional nanowires can shorten the ions transport path, while two-dimensional nanosheets expose many active sites. This enables three-dimensional structured composite with high electrochemical activity. The as-prepared heterostructured materials show a specific of 1048 C/g at 1 A/g. It still maintains 75.6% of initial capacity after 20000 cycles at 10 A/g. The device delivers an energy density of 79.2 Wh/kg when the power density reaches to 2280 W/kg. Moreover, it possesses an excellent mechanical stability after repeated folding at different angles  相似文献   

6.
《中国化学快报》2021,32(11):3553-3557
Although transition metal phospho-sulfides deliver outstanding electrochemical performance, complex preparation methods hindered their further development. Herein, we report a facile one-step electrodeposition approach to deposit interconnected nanowalls-like nickel cobalt phospho-sulfide (Ni-Co-P-S) nanosheets onto the surface of carbon cloth. The thin Ni-Co-P-S nanosheets with multi-components and synergetic effects delivered rich active sites, further enhancing reversible capacitance. Therefore, the as-prepared Ni-Co-P-S electrode materials exhibit excellent electrochemical performance in a three-electrode system, showcasing a high specific capacitance of 2744 F/g at 4 A/g. The full supercapacitors based on Ni-Co-P-S as positive electrode and active carbon as negative electrode showcase a high specific capacitance of 110.9 F/g at 1 A/g, impressive energy density of 39.4 Wh/kg at a power density of 797.5 W/kg in terms of excellent cycling stability (91.87% retention after 10,000 cycles). This simple electrode position strategy for synthesizing Ni-Co-P-S can be extended to prepare electrode materials for various sustainable electrochemical energy storage/conversion technologies.  相似文献   

7.
Hierarchical superstructures assembled by nanosheets can effectively prevent aggregation of nanosheets and improve performance in energy storage. Therefore, we proposed a facile hydrothermal method to obtain three-dimensional(3D) superstructure assembled by nanosheets. We found that the ratio of Co2+/HMTA affected the morphology of the samples, and the 3D hierarchical structures of are obtained while the ratio of Co2+/HMTA is 12:25. The hierarchical structures with sufficie...  相似文献   

8.
首先采用溶液法在碳布上生长Co-MOF二维纳米片,通过高温退火和刻蚀后得到MOF衍生多孔碳纳米片。以Co-MOF衍生的多孔碳纳米片/碳布(CNS/CC)作为碳基骨架,采用电化学沉积法负载高活性氮掺杂石墨烯量子点(N-GQDs),制备得到分级多孔结构的N-GQD/CNS/CC复合材料。组装成自支撑且无粘结剂的N-GQD/CNS/CC电极,当电流密度为1 A·g~(-1)时,其比电容高达423 F·g~(-1)。通过储能机制和电容贡献机制的研究表明,在碳纤维上原位生长的具有高双电层电容的CNS和表面负载具有高赝电容的N-GQDs之间相互协同作用,使得N-GQD/CNS/CC电极具有高电容性能,是一种理想的超级电容器电极材料。电极材料的高导电、分级多孔结构有利于电子的传输和电解质离子的扩散,具有良好的动力学性能,能快速充放电和具有优异的倍率特性。将电极组装成对称型超级电容器,功率密度为250 W·kg~(-1)时对应的能量密度达到7.9 Wh·kg~(-1),且经过10 000次循环后电容保持率为91.2%,说明氮掺杂石墨烯量子点/MOF衍生多孔碳纳米片复合材料是一种电化学性能稳定的具有高电容性能的全碳电极材料。  相似文献   

9.
《中国化学快报》2020,31(9):2330-2332
By integrating the merits of lanthanide elements and quantum dots, we firstly design CeO2 quantum dots doped Ni-Co hydroxide nanosheet via a controllable synthetic strategy, which exhibits a large specific capacitance (1370.7 F/g at 1.0 A/g) and a good cyclic stability (90.6% retention after 4000 cycles). Moreover, we assemble an aqueous asymmetric supercapacitor with the obtained material, which has an extremely high energy density (108.9 Wh/kg at 378 W/kg) and outstanding cycle stability (retaining 88.1% capacitance at 2.0 A/g after 4000 cycles).  相似文献   

10.
11.
《中国化学快报》2022,33(8):3961-3967
Hierarchical porous carbon (HPC) from bituminous coal was designed and synthesized through pyrolysis foaming and KOH activation. The obtained HPC (NCF-KOH) were characterized by a high specific surface area (SBET) of 3472.41 m2/g, appropriate mesopores with Vmes/Vtotal of 57%, and a proper amount of surface oxygen content (10.03%). This NCF-KOH exhibited a high specific capacitance of 487 F/g at 1.0 A/g and a rate capability of 400 F/g at 50 A/g based on the three-electrode configuration. As an electrode for a symmetric capacitor, a specific capacitance of 299 F/g at 0.5 A/g was exhibited, and the specific capacitance retained 96% of the initial capacity at 5 A/g after 10,000 cycles. Furthermore, under the power density of 249.6 W/kg in 6 mol/L KOH, a high energy density of 10.34 Wh/kg was obtained. The excellent charge storage capability benefited from its interconnected hierarchical pore structure with high accessible surface area and the suitable amount of oxygen-containing functional groups. Thus, an effective strategy to synthesize HPC for high-performance supercapacitors serves as a promising way of converting coal into advanced carbon materials.  相似文献   

12.
《中国化学快报》2022,33(8):3883-3888
Designing a carbon material with a unique composition and surface functional groups for offering high specific capacity in a wide voltage window is of great significance to improve the energy density for the supercapacitor in a cheap and eco-friendly aqueous electrolyte. Herein, we develop an efficient strategy to synthesize a N, O co-doped hierarchically porous carbon (NODPC-1.0) with moderate specific surface area and pore volume as well as rich heteroatoms using a deep eutectic solvent (DES) as an activator. It is found that NODPC-1.0 with a large proportion of pseudocapacitive functional groups (pyrrole-N, pyridine-N and carbonyl-quinone) can work stable in an acidic 2 mol/L Li2SO4 (pH 2.5) electrolyte, exhibiting specific capacities of 375 and 186 F/g at the current densities of 1.0 and 100 A/g, respectively. Also, the assembled symmetric capacitor using the NODPC-1.0 as the active material and 2 mol/L acidic Li2SO4 (pH 2.5) as the electrolyte shows an outstanding energy density of 74.4 Wh/kg at a high power density of 1.44 kW/kg under a broad voltage window (2.4 V). Relevant comparative experiments indicate that H+ of the acidic aqueous electrolyte plays a crucial part in enhancement the specific capacity, and the abundant pseudocapacitive functional groups on the surface of the NODPC-1.0 sample play the key role in the improvement of electrochemical cycle stability under a broad voltage window.  相似文献   

13.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

14.
《中国化学快报》2020,31(9):2358-2364
Zinc-based electrochemistry energy storage with high safety and high theoretical capacity is considered to be a competitive candidate to replace lithium-ion batteries. In electrochemical energy storage, multi-metal oxide cathode materials can generally provide a wider electrochemical stability window and a higher capacity compared with single metal oxides cathode. Here, a new type of cathode material, MnFe2Co3O8 nanodots/functional graphene sheets, is designed and used for aqueous hybrid Zn-based energy storage. Coupling with a hybrid electrolyte based on zinc sulfate and potassium hydroxide, the as-fabricated battery was able to work with a wide electrochemical window of 0.1∼1.8 V, showed a high specific capacity of 660 mAh/g, delivered an ultrahigh energy density of 1135 Wh/kg and a scalable power density of 5754 W/kg (calculated based on the cathode), and displayed a long cycling life of 1000 cycles. These are mainly attributed to the valence charge density distribution in MnFe2Co3O8 nanodots, the good structural strengthening as well as high conductivity of the cathode, and the right electrolyte. Such cathode material also exhibited high electrocatalytic activity for oxygen evolution reaction and thus could be used for constructing a Zn-air battery with an ultrahigh reversible capacity of 9556 mAh/g.  相似文献   

15.
MnO2/polyaniline/graphene composite as a supercapacitor electrode material was synthesized through an interfacial polymerization approach in the interface of oil/water phase. The as‐synthesized MPG is characterized by infrared spectroscopy, XRD, XPS, SEM and TEM, and its electrochemical performance is measured by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The 3D nanostructure of MPG and loose nanorod structure of polyaniline (PANI) coated with round MnO2 pellets could be clearly observed. The maximum energy density of MPG is 45.4 Wh/kg (at a power density of 67.8 kW/kg) and the highest power density is 229.2 kW/kg (at an energy density of 25.7 Wh/kg). The capacitance retentions after 500 cycles at the scan rate of 5 mV/s for MGP composite and PANI/graphene are 70.4% and 59.1%, respectively, and the capacitance values after 500 cycles are 158.4 F/g and 114.8 F/g, respectively. The improved performance of MPG is due to the 3D nanostructure, loose nanorod structure of PANI and stable support of graphene, which prevent the mechanical deformation effectively during the fast charge/discharge process and facilitate the diffusion of the electrolyte ions into the inner region of active materials. The composite material is very promising for the next generation of high‐performance supercapacitors electrode.  相似文献   

16.
《中国化学快报》2021,32(8):2453-2458
In power storage technology,ion exchange is widely used to modify the electronic structures of electrode materials to stimulate their electrochemical properties.Here,we proposed a multistep ion exchange(cation exchange and anion exchange) strategy to synthesize amorphous Ni-Co-S and β-Co(OH)_2 hybrid nanomaterials with a hollow polyhedron structures.The synergistic effects of different components and the remarkable superiorities of hollow structure endow Ni-Co-S/Co(OH)_2 electrode with outstanding electrochemical performance,including ultra-high specific capacity(1440.0 C/g at 1 A/g),superior capacitance retention rate(79.1% retention at 20 A/g) and long operating lifespan(81.4% retention after5000 cycles).Moreover,the corresponding hybrid supercapacitor enjoys a high energy density of 58.4 Wh/kg at the power density of 0.8 kW/kg,and a decent cyclability that the capacitances are maintained at80.8% compared with the initial capacitance.This research presents a high-performance electrode material and provides a promising route for the construction of electrode materials for supercapacitors with both structural and component advantages.  相似文献   

17.
A mild hydrothermal process is applied to synthesize hydrous ruthenium–tin binary oxides (Ru0.7Sn0.3O2·nH2O) with good capacitive performance in alkaline system. Then, a symmetric electrochemical capacitor (EC) is fabricated based on the as-synthesized Ru0.7Sn0.3O2·nH2O material and 1 M KOH aqueous electrolyte. Electrochemical performance of the symmetric EC is investigated by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy tests. Electrochemical tests demonstrate that the symmetric EC surprisingly can operate with a high upper cell voltage limit of 1.45 V in 1 M KOH electrolyte. Maximum specific capacitance and energy density of the symmetric aqueous EC are approximately 160 F/g and 21 Wh/kg, respectively, delivered at a current density of 1.25 A/g. And the specific energy density decreases to approximately 15 Wh/kg when the specific power density increases up to approximately 1,770 W/kg. The promising specific energy and power densities are obtained simultaneously for the unwonted symmetric EC due to its larger operating potential range. Moreover, the symmetric EC exhibits electrochemical stability with 85.2% of the initial capacitance over consecutive 1,000 cycle numbers.  相似文献   

18.
Metal-organic framework materials(MOFs), such as zeolitic imidazolate framework(ZIF), have been widely used in energy storage due to their advantages such as high structural stability, large specific surface, more active sites and skeleton structures. Herein, a novel two-dimensional(2D) Co Cu-ZIF was synthesized by a facile solvothermal method. The as-prepared Co Cu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 m Ah/g and remains at 1172.1 m Ah/g after 300 cycles at a current...  相似文献   

19.
《中国化学快报》2020,31(9):2235-2238
We report a convenient method to synthesize O, N-codoped hierarchical porous carbon by one-step carbonization of the mixture of KHCO3, urea and alginic acid. Benefiting from KHCO3 and urea synergistic effect, the obtained O, N-codoped hierarchical porous carbon (NPC-700) material has a well-developed interconnected porous framework with ultrahigh specific surface area (2846 m2/g) and massive heteroatoms functional groups. Consequence, such porous carbon displays high specific capacitance (324 F/g at 1 A/g), excellent rate performance (212 F/g at 30 A/g) and good electrochemical stabilization in 6 mol/L KOH solution. More importantly, the assembled NPC-700//NPC-700 symmetrical supercapacitor can achieve a high energy density of 18.8 Wh/kg and good electrochemical stabilization in 1 mol/L Na2SO4 solution. This process opens up a new way to design heteroatoms-doped hierarchical porous carbon derived from biomass materials for supercapacitors.  相似文献   

20.
Biomass had been extensively explored and applied in many fields due to their abundance, attractive structure, low cost, renewability, and environmental friendliness. Cottonseed meal (CM), one of the by-products of cotton, consisted of much crude protein, fiber, and inorganic ions, was a potential carbon precursor. In this work, CM was used to prepare N, S, and O self-doped carbon materials by two steps (hydrothermal pre-carbonization and K2CO3 carbonization–activation) processes. The optimized material displayed high capacitive performance, which benefited from the large surface area (2361 m2/g), hierarchical porous structure and rich multi-heteroatoms doping of the prepared porous carbon. What's more, we prepared a new-type K2CO3-based deep eutectic solvent (DES) electrolyte. The assembled symmetric device using DES electrolyte displayed a superior energy density (34.4 Wh/kg) at room temperature. Furthermore, the energy density could reach 36.5 Wh/kg when the temperature rose to 50 °C. Even under extreme conditions, the device delivered a not particularly bad energy density (11.8 Wh/kg at ?25 °C and 8.6 Wh/kg at 105 °C). This study provided an efficient and simple method to prepare CM-based heteroatoms self-doped porous carbon materials and uncovered a new possibility for the exploitation of carbon-based supercapacitors with high energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号