首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
《化学:亚洲杂志》2017,12(10):1111-1119
The photoelectrochemical production and degradation properties of hydrogen peroxide (H2O2) were investigated on a WO3/BiVO4 photoanode in an aqueous electrolyte of hydrogen carbonate (HCO3). High concentrations of HCO3 species rather than CO32− species inhibited the oxidative degradation of H2O2 on the WO3/BiVO4 photoanode, resulting in effective oxidative H2O2 generation and accumulation from water (H2O). Moreover, the Au cathode facilitated two‐electron reduction of oxygen (O2), resulting in reductive H2O2 production with high current efficiency. Combining the WO3/BiVO4 photoanode with a HCO3 electrolyte and an Au cathode also produced a clean and promising design for a photoelectrode system specializing in H2O2 production (η anode(H2O2)≈50 %, η cathode(H2O2)≈90 %) even without applied voltage between the photoanode and cathode under simulated solar light through a two‐photon process; this achieved effective H2O2 production when using an Au‐supported porous BiVO4 photocatalyst sheet.  相似文献   

2.
《中国化学快报》2021,32(10):3215-3220
Antibiotics such as sulfonamides are widely used in agriculture as growth promoters and medicine in treatment of infectious diseases. However, the release of these antibiotics has caused serious environmental problems. In this paper, photocatalytic oxidation technology was used to degrade sulfadiazine (SDZ), one of the typical sulfonamides antibiotics, in UV illuminated TiO2 suspensions. It was found that TiO2 nanosheets (TiO2-NSs) with exposed (001) facets exhibit much higher photoreactivity towards SDZ degradation compared to TiO2 nanoparticles (TiO2-NPs) with a rate constant increases from 0.017 min−1 to 0.035 min−1, improving by a factor of 2.1. Under the attacking of reactive oxygen species (ROSs) such as superoxide radicals (O2) and hydroxyl radicals (OH), SDZ was steady degraded on the surface of TiO2-NSs. Based on the identification of the produced intermediates by LC–MS/MS, possible degradation pathways of SDZ, which include desulfonation, oxidation and cleavage, were put forwards. After UV irradiation for 4 h, nearly 90% of the total organic carbon (TOC) can be removed in suspensions of TiO2-NSs, indicating the mineralization of SDZ. TiO2-NSs also exhibits excellent stability in photocatalytic degradation of SDZ in wide range of pH. Even after recycling used for 7 times, more than 91.3% of the SDZ can be efficiently removed, indicating that they are promising to be practically used in treatment of wastewater containing antibiotics.  相似文献   

3.
A PEC cell with nanostructured BiVO4 photoelectrode film presents outstanding azo dye degradation and simultaneous H2 production performance.  相似文献   

4.
Natural photosynthesis is an effective route for the clean and sustainable conversion of CO2 into high‐energy chemicals. Inspired by the natural process, a tandem photoelectrochemical (PEC) cell with an integrated enzyme‐cascade (TPIEC) system was designed, which transfers photogenerated electrons to a multienzyme cascade for the biocatalyzed reduction of CO2 to methanol. A hematite photoanode and a bismuth ferrite photocathode were applied to fabricate the iron oxide based tandem PEC cell for visible‐light‐assisted regeneration of the nicotinamide cofactor (NADH). The cell utilized water as an electron donor and spontaneously regenerated NADH. To complete the TPIEC system, a superior three‐dehydrogenase cascade system was employed in the cathodic part of the PEC cell. Under applied bias, the TPIEC system achieved a high methanol conversion output of 220 μm h−1, 1280 μmol g−1 h−1 using readily available solar energy and water.  相似文献   

5.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

6.
Realizing nitrogen reduction reaction(NRR) to synthesis NH_3 under mild conditions has gained extensive attention as a promising alternative way to the energy-and emission-intensive Haber-Bosch process.Among varieties of potential strategies,photoelectrochemical(PEC) NRR exhibits many advantages including utilization of solar energy,water(H_2O) as the hydrogen source and ambient operation conditions.Herein,we have designed a solar-driven PEC-NRR system integrating high-efficiency Fe_2O_3-based photoanode and atomically dispersed cobalt(Co) cathode for ambient NH_3 synthesis.Using such solar-driven PEC-NRR system,high-efficiency Fe_2O_3-based photoanode is responsible for H_2O/OH oxidatio n,and meanwhile the generated photoelectrons transfer to the single-atom Co cathode for the N_2 reduction to NH_3.As a result,this system can afford an NH_3 yield rate of 1021.5 μg mgco~(-1) h~(-1) and a faradic efficiency of 11.9% at an applied potential bias of 1.2 V(versus reversible hydrogen electrode) on photoanode in 0.2 mol/L NaOH electrolyte under simulated sunlight irradiation.  相似文献   

7.
Tantalum nitride (Ta3N5) has emerged as a promising photoanode material for photoelectrochemical (PEC) water splitting. However, the inefficient electron-hole separation remains a bottleneck that impedes its solar-to-hydrogen conversion efficiency. Herein, we demonstrate that a core–shell nanoarray photoanode of NbNx-nanorod@Ta3N5 ultrathin layer enhances light harvesting and forms a spatial charge-transfer channel, which leads to the efficient generation and extraction of charge carriers. Consequently, an impressive photocurrent density of 7 mA cm−2 at 1.23 VRHE is obtained with an ultrathin Ta3N5 shell thickness of less than 30 nm, accompanied by excellent stability and a low onset potential (0.46 VRHE). Mechanistic studies reveal the enhanced performance is attributed to the high-conductivity NbNx core, high-crystalline Ta3N5 mono-grain shell, and the intimate Ta−N−Nb interface bonds, which accelerate the charge-separation capability of the core–shell photoanode. This study demonstrates the key roles of nanostructure design in improving the efficiency of PEC devices.  相似文献   

8.
The efficient utilization of solar energy for photoelectrocatalytic (PEC) water splitting is a feasible solution for developing clean energy and alleviating environmental issues. However, as the core of PEC technology, the existing photoanode catalysts have disadvantages such as poor photoelectrocatalytic conversion efficiency, low conductivity of photogenerated carriers, and instability. Here, we report the ultrathin two-dimensional sandwich-like (SW) heterojunction of In2Se3/In2S3/In2Se3 (SW In2S3@In2Se3) for the first time for PEC water splitting. Our findings identify the efficient separation of electrons and holes by constructing SW In2S3@In2Se3 heterojunction. The in situ synthesis of ultrathin nanosheet arrays by using surface substitution of Se atom to epitaxially grow cell In2Se3 maximizes the contact area of heterogeneous interface and accelerates the transmission of charge carrier. Benefitting from the unique structure and composition characteristic, SW In2S3@In2Se3 displays excellent performance in PEC water splitting. The photocurrent density of SW In2S3@In2Se3 reaches 8.43 mA cm−2 at 1.23 VRHE. Compared with In2S3, the SW In2S3@In2Se3 photoanode has nearly 12 times higher PEC performance, which represents the best performance among the In2S3-based photoanode heterojunction reported so far. The evolution rate of O2 reaches 78.8 μmol cm−2 h−1, and the photocurrent has no apparent variety within 24 h.  相似文献   

9.
Nanotubular Fe2O3 is a promising photoanode material, and producing morphologies that withstand high‐temperature calcination (HTC) is urgently needed to enhance the photoelectrochemical (PEC) performance. This work describes the design and fabrication of Fe2O3 nanotube arrays that survive HTC for the first time. By introducing a ZrO2 shell on hydrothermal FeOOH nanorods by atomic layer deposition, subsequent high‐temperature solid‐state reaction converts FeOOH‐ZrO2 nanorods to ZrO2‐induced Fe2O3 nanotubes (Zr‐Fe2O3 NTs). The structural evolution of the hematite nanotubes is systematically explored. As a result of the nanostructuring and shortened charge collection distance, the nanotube photoanode shows a greatly improved PEC water oxidation activity, exhibiting a photocurrent density of 1.5 mA cm−2 at 1.23 V (vs. reversible hydrogen electrode, RHE), which is the highest among hematite nanotube photoanodes without co‐catalysts. Furthermore, a Co‐Pi decorated Zr‐Fe2O3 NT photoanode reveals an enhanced onset potential of 0.65 V (vs. RHE) and a photocurrent of 1.87 mA cm−2 (at 1.23 V vs. RHE).  相似文献   

10.
Sluggish oxygen evolution kinetics are one of the key limitations of bismuth vanadate (BiVO4) photoanodes for efficient photoelectrochemical (PEC) water splitting. To address this issue, we report a vanadium oxide (VOx) with enriched oxygen vacancies conformally grown on BiVO4 photoanodes by a simple photo-assisted electrodeposition process. The optimized BiVO4/VOx photoanode exhibits a photocurrent density of 6.29 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, which is ca. 385 % as high as that of its pristine counterpart. A high charge-transfer efficiency of 96 % is achieved and stable PEC water splitting is realized, with a photocurrent retention rate of 88.3 % upon 40 h of testing. The excellent PEC performance is attributed to the presence of oxygen vacancies in VOx that forms undercoordinated sites, which strengthen the adsorption of water molecules onto the active sites and promote charge transfer during the oxygen evolution reaction. This work demonstrates the potential of vanadium-based catalysts for PEC water oxidation.  相似文献   

11.
The strategy of structurally integrating noble metal and metal oxides is expected to offer exceptional opportunities toward emerging functions of all. We report the creation of an efficient hetero-structured nanocatalyst consisting of Mn3O4 core, SiO2 shell impregnated with noble Ag nanoparticles. The triple nanocatalyst Mn3O4/Ag/SiO2 was synthesized by using a facile three-step approach to disperse Ag nanoparticles between the surfaces of functionalized Mn3O4 and SiO2. The physicochemical structural characterization was performed by XRD and FTIR. The surface morphologies were observed by SEM and TEM. The EDX measurements confirmed the composition of the composite. The nanocomposite has been used as a catalyst for the degradation of Direct blue 78 in the presence of sodium borohydride (NaBH4). It has a drastic catalytic effect as compared to Mn3O4/Ag and Mn3O4. The rate constant of Direct blue 78 reduction followed the order: Mn3O4/Ag/SiO2 (0.25166 min−1) > Mn3O4/Ag (0.07971 min−1) > Mn3O4 (0.00947 min−1). The effects of different reaction conditions of the catalytic reaction have been determined. The catalytic activity of the as- synthesized nanocomposite was examined for the binary dyes system by incorporation of an additional dye (Sunset yellow). Its influence on the degradation rate and efficiency of Direct blue 78 was investigated. The nanocatalyst exhibited excellent catalytic activity towards the complete degradation of both the Direct blue 78 and Sunset yellow. The degradation percentage for these dyes reached 99.33 and 94.68%, respectively. The recovery and reusability of the Mn3O4/Ag/SiO2 nanocomposite was studied in the reduction reaction of Direct blue 78. Five consecutive recovery reaction cycles were performed. They revealed high stability and constant efficiency of the catalyst for four cycles.  相似文献   

12.
《中国化学快报》2021,32(8):2544-2550
Recently, the degradation of organic compounds in saline dye wastewater by sulfate radicals (SO4)-based advanced oxidation processes (AOPs) have attracted much attention. However, previous studies on these systems have selected non-chlorinated dyes as model compounds, and little is known about the transformation of chlorinated dyes in such systems. In this study, acid yellow 17 (AY-17) was selected as a model of chlorinated contaminants, and the degradation kinetics and evolution of oxidation byproducts were investigated in the UV/PDS system. AY-17 can be efficiently degraded (over 98% decolorization) under 90 min irradiation at pH 2.0–3.0, and the reaction follows pseudo-first order kinetics. Cl accelerated the degradation of AY-17, but simultaneously led to an undesirable increase of absorbable organic halogen (AOX). Several chlorinated byproducts were identified by liquid chromatography-mass spectrometry (LC–MS/MS) in the UV/PDS system. It indicates that endogenic chlorine and exogenic Cl reacted with SO4 to form chloride radicals, which are involved in the dechlorination and rechlorination of AY-17 and intermediates. The possible degradation mechanisms of AY-17 photooxidative degradation are proposed. This work provides valuable information for further studies on the role of exogenic chloride in the degradation of chlorinated azo dyes and the kinetic parameters in the PDS-based oxidation process.  相似文献   

13.
采用简单浸渍的方法对BiVO4光阳极进行表面钨(W)掺杂,以环丙沙星(CIP)为药品和个人护理产品(PPCPs)模型污染物,研究了W掺杂BiVO4光阳极降解CIP的表面态行为。结果表明,低浓度W掺杂对BiVO4光阳极的晶体结构、表面形貌和光吸收性能没有显著影响。但W掺杂取代了BiVO4光阳极表面的V5+,能抑制BiVO4光阳极表面V5+/V4+还原过程,减少复合中心表面态,同时引入更多氧空穴,增加活性位点表面态。CIP的降解反应受表面活性位点控制。表面W掺杂能有效促进CIP降解的电荷转移,提高BiVO4光阳极光电催化降解性能。  相似文献   

14.
Fabrication of an efficient, stable, and versatile photocatalysts for the energy and environment remediation applications is an urgent task for the current researchers. In this work, we have successfully synthesized a versatile hybrid photocatalysts, i.e.; CdMoO4/g-C3N4 (CMO/CN) by a facile and simple one-pot in-situ hydrothermal method. Here CdMoO4 (CMO) microspheres were deposited on the g-C3N4 (CN) sheets. Fabricated CN, CMO, and CMO/CN composite photocatalysts were analyzed with various characterization techniques like UV–visible diffuse reflectance spectra (UV–Vis DRS), photoluminescence spectroscopy (PL), time-resolved fluorescence lifetime (TRFL), electrochemical impedance spectroscopy (EIS), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy–energy-dispersive X-ray analysis (SEM-EDX), transmission electron microscope (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The results reveal that the formation of a strong heterojunction between two semiconductors leads to the formation of active photocatalyst. Furthermore, as-synthesized materials were tested for the photoelectrocatalytic (PEC) oxygen evolution reactions (OERs) in acidic medium, and photocatalytic (PC) degradation of methylene blue (MB) under light irradiation. Among all tested samples, CMO/CN-10 has shown the highest current density 52.74 mA cm?2 at 1.95 V with lowest over potential of 0.70 mV on glassy carbon electrode for OER in acidic medium under the light irradiation. The PC degradation rate constant of CMO/CN-10 composite in MB solution is k = 2.0 × 10?2 min?1, whereas for the pure CMO and CN degradation rate constant is k = 5.7 × 10?3 min?1 and k = 1.2 × 10?2 min?1, respectively. This enhancement in PEC and PC properties is due to the fast migration of photo-induced electrons in the case of CMO/CN-10 nanocomposite. Trapping experiment results reveal the major reactive species for PC degradation of MB is ?OH (hydroxyl radicals) and h+ (holes), respectively, and suitable PC reaction mechanism also proposed for CMO/CN-10 composites. Based on the above remarkable results, it would be a potential nanocomposite for the PEC oxygen evolution and PC degradation of MB under light illumination.  相似文献   

15.
采用简单浸渍的方法对BiVO4光阳极进行表面钨(W)掺杂,以环丙沙星(CIP)为药品和个人护理产品(PPCPs)模型污染物,研究了W掺杂BiVO4光阳极降解CIP的表面态行为。结果表明,低浓度W掺杂对BiVO4光阳极的晶体结构、表面形貌和光吸收性能没有显著影响。但W掺杂取代了BiVO4光阳极表面的V5+,能抑制BiVO4光阳极表面V5+/V4+还原过程,减少复合中心表面态,同时引入更多氧空穴,增加活性位点表面态。CIP的降解反应受表面活性位点控制。表面W掺杂能有效促进CIP降解的电荷转移,提高BiVO4光阳极光电催化降解性能。  相似文献   

16.
《中国化学快报》2021,32(10):3226-3230
Low dimension nano photocatalysts show great potential in the field of treating contaminated water for their large surface area and size effect. In this study, a 0D/1D AgI/MoO3 Z-scheme photocatalyst with striking photocatalytic performance was constructed successfully. The one-dimensional MoO3 nanobelts were prepared by a simple hydrothermal method, and then it was modified by AgI nanoparticles in a handy deposition approach. When choosing sulfamethoxazole (SMZ) as the target contaminant, the rate constant value of the optimal 0D/1D AgI/MoO3 composite could hit up to 0.13 min−1, which is nearly 22.4 times and 32.5 times as that of pure MoO3 (0.0058 min−1) and AgI (0.0040 min−1), respectively. A series of detailed characterizations give evidences that the charge transfer in the composite followed Z scheme mechanism. Therefore, efficient separation/transfer and the remained high redox activity of photogenerated carriers played a vital role in the sharply enhanced photocatalytic properties. The possible degradation pathways of SMZ were proposed based on the intermediates detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Meanwhile, the magnificent cyclic stability makes the material a promising material in the practical application.  相似文献   

17.
Hematite(α-Fe_2O_3) is a promising photoanode for photoelectrochemical(PEC) water splitting.However,the severe charge recombination and sluggish water oxidation kinetics extremely limit its use in photohydrogen conversion.Herein,a co-activation strategy is proposed,namely through phosphorus(P)doping and the loading of CoAl-layered double hydroxides(CoAl-LDHs) cocatalysts.Unexpectedly,the integrated system,CoAl-LDHs/P-Fe_2O_3 photoanode,exhibits an outstanding photocurrent density of 1.56 mA/cm~2 at 1.23 V(vs.reversible hydrogen electrode,RHE),under AM 1.5 G,which is 2.6 times of pureα-Fe_2O_3.Systematic studies reveal that the remarkable PEC performance is attributed to accelerated surface OER kinetics and enhanced carrier separation efficiency.This work provides a feasible strategy to enhance the PEC performance of hematite photoanodes.  相似文献   

18.
A comparative investigation of a complex process of the interaction between CCl4 vapor and oxide ions O2– (carbochlorination) in K2SrCl4 and KSr2Cl5 melts at 973 K was performed by the potentiometric method using Pt(O2)|ZrO2(Y2O3) membrane oxygen electrode as reversible to oxide ion. The analysis of the limiting stages of this process was made on the basis of van't Hoff diagrams. The entire process can be divided into three stages with corresponding limiting processes: the rate of CCl4 dissolution in the melts for stage 1, the chemical reaction in the melts for stage 2, and the rate of the contamination of the melts with oxygen-containing admixtures for the stage 3. The rate constants of the carbochlorination process in both melts at 973 K were calculated using the data corresponding to stage 2 as (4.4 ± 0.25) × 105 kg mol−1 min−1 for K2SrCl4 and (1.83 ± 0.5) × 105 kg mol−1 min−1 for KSr2Cl5. The final concentration of oxide ions after the treatment is higher ( = (1.6 ± 0.7) × 10−7 mol kg−1 for KSr2Cl5 and  = (2.5 ± 1.3) × 10−8 mol kg−1 for K2SrCl4 melt, respectively). This corresponds to the difference in the oxoacidic properties of the studied melts.  相似文献   

19.
Molecular Co4O4 cubane water oxidation catalysts were combined with BiVO4 electrodes for photoelectrochemical (PEC) water splitting. The results show that tuning the substituent groups on cobalt cubane allows the PEC properties of the final molecular catalyst/BiVO4 hybrid photoanodes to be tailored. Upon loading a new cubane complex featuring alkoxy carboxylato bridging ligands ( 1 h ) on BiVO4, an AM 1.5G photocurrent density of 5 mA cm−2 at 1.23 V vs. RHE for water oxidation was obtained, the highest photocurrent for undoped BiVO4 photoanodes. A high solar‐energy conversion efficiency of 1.84 % was obtained for the integrated photoanode, a sixfold enhancement over that of unmodified BiVO4. These results and the high surface charge separation efficiency support the role of surface‐modified molecular catalysts in improving PEC performance and demonstrate the potential of molecule/semiconductor hybrids for efficient artificial photosynthesis.  相似文献   

20.
Halide perovskites show incredible photovoltaic power conversion efficiency coupled with several hundreds of hours of device stability. However, their stability is poor in aqueous electrolyte media. Reported here is a vacancy ordered halide perovskite, Cs2PtI6, which shows extraordinary stability under ambient conditions (1 year), in aqueous media of extreme acidic (pH 1), basic (pH 13), and under electrochemical reduction conditions. It was employed as an electrocatalyst and photoanode for hydrogen production and water oxidation, respectively. The catalyst remains intact for at least 100 cycles of electrochemical cycling and six hours of hydrogen production at pH 1. Cs2PtI6 was employed as a photoanode for PEC water oxidation, and the material displayed a photocurrent of 0.8 mA cm−2 at 1.23 V (vs. RHE) under simulated AM1.5G sunlight. Using constant voltage measurement, Cs2PtI6 exhibited over 12 hours of PEC stability without loss of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号