首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The synthesis and crystal structure of two heteronuclear compounds stabilized by four dipyridylamide (dpa) ligands is reported. Cu2Pd(dpa)4Cl2 (1) and Cu2Pt(dpa)4Cl2 (2) exhibit an approximate D4 symmetry and a linear metal framework. They are structurally similar to the homotrinuclear complexes M3(dpa)4L2 already characterized with various transition metals (M=Cr, Co, Ni, Cu, Rh, Ru). With 26 metal valence electrons, they are also isoelectronic to the oxidized form of the tricopper complex [Cu3(dpa)4Cl2]+ (3), previously characterized and investigated by Berry et al.10 The magnetic properties and the EPR spectra of 1 and 2 are reported. The results for 1 are interpreted in terms of a weak antiferromagnetic interaction (2J=-7.45 cm(-1) within the framework of the Heisenberg Hamiltonian H=-2JAB ?A?B) between the Cu(II) magnetic centers. For 2, the antiferromagnetic interaction sharply decreases to <1 cm(-1). These properties are at variance with those of (3), for which a relatively strong antiferromagnetic interaction (2J=-34 cm(-1)) had been reported. DFT/UB3LYP calculations reproduce the decrease of the magnetic interaction from 3 to 1 and assign it to the role of the nonmagnetic metal in the transference of the superexchange coupling. However, the vanishing of the magnetic interaction in 2 could not be reproduced at this level of theory and is tentatively assigned to spin-orbit coupling.  相似文献   

2.
Aoki C  Ishida T  Nogami T 《Inorganic chemistry》2003,42(23):7616-7625
A new chelating radical ligand 4ImNNH (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide) was prepared, and complexation with divalent transition metal salts gave complexes, [M(4ImNNH)(2)X(2)], which showed intermolecular ferromagnetic interaction in high probability (7 out of 10 paramagnetic compounds investigated here). The nitrate complexes (X = NO(3); M = Mn (1), Co (2), Ni (3), Cu (4)) crystallize isomorphously in monoclinic space group P2(1)/a. The equatorial positions are occupied with two 4ImNNH chelates and the nitrate oxygen atoms are located at the axial positions. Magnetic measurements revealed that the intramolecular exchange couplings in 1, 2, and 4 were antiferromagnetic, while that in 3 was ferromagnetic with 2J/k(B) = +85 K, where the spin Hamiltonian is defined as H = -2J(S(1).S(2) + S(2).S(3)) based on the molecular structures determined as the linear radical-metal-radical triads. The intramolecular ferromagnetic interaction in 3 is interpreted in terms of orthogonality between the radical pi and metal dsigma orbitals. Compounds 1-3 exhibited intermolecular ferromagnetic interaction ascribable to a two-dimensional hydrogen bond network parallel to the crystallographic ab plane. Complex 3 became an antiferromagnet below 3.4 K and exhibited a metamagnetic transition on applying a magnetic field of 5.5 kOe at 1.8 K. The complexes prepared from metal halides, [M(4ImNNH)(2)X(2)] (X = Cl, Br; M = Mn, Co, Ni, Cu), showed intramolecular antiferromagnetic interactions, which are successfully analyzed based on the radical-metal-radical system. The crystal structures determined here on 1-4, [Mn(4ImNNH)(2)Cl(2)], and [Cu(4ImNNH)(2)Br(2)] always have intermolecular hydrogen bonds of H(imidazole).X(axial ligand)-M, where X = NO(3), Cl, Br. This interaction seems to play an important role in molecular packing and presumably also in magnetic coupling.  相似文献   

3.
Belinsky MI 《Inorganic chemistry》2006,45(22):9096-9106
Valence delocalization in the [Cu3(7+)] trimer is considered in the model of the double-exchange coupling, in which full delocalization corresponds to the migration of the single d(x2-y2) hole and relatively strong isotropic double-exchange coupling. Strong double exchange results in the pairing of the individual spins in the delocalized trimer even at room temperature. The model explains the delocalized singlet 1A1 ground state in the planar Cu3(mu3-O) core by strong double exchange with positive double-exchange parameter t(0), whereas the delocalized triplet ground state of the [Cu3(7+)] trimer, which was observed in the Cu3(mu3-S)2 cluster, may be explained by the double exchange with relatively weak positive t(0): 0 < t(0) < 2J (degenerate 3E ground state) or negative t(0) (triplet 3A2 ground state). An analysis of the splitting of the delocalized degenerate 3E term requires inclusion of the antisymmetric double-exchange interaction, which takes into account the spin-orbit coupling in the double-exchange model. The cluster parameter KZ of the antisymmetric double-exchange coupling is proportional to t(0) and anisotropy of the g factor Deltag(parallel)[Cu(II)], KZ < t(0). Antisymmetric double exchange is relatively large in the [Cu3(7+)] cluster with the d(x2-y2) magnetic orbitals lying in the Cu3 plane [Cu3(mu3-O) core], whereas for the d(x2-y2) magnetic orbitals lying in the plane perpendicular to Cu3, antisymmetric double-exchange coupling is weak [Cu3(mu3-S)2 cluster]. The antisymmetric double-exchange coupling results in the linear zero-field splitting DeltaK = 2[equation: see text]KZ (approximately t(0)) of the delocalized degenerate 3E term that leads to strong anisotropy of the Zeeman splittings in the external magnetic field and a complex electron paramagnetic resonance (EPR) spectrum. The delocalized model of hyperfine interaction explains the hyperfine structure [10 hyperfine lines with the relative intensities 1:3:6:10:12:12:10:6:3:1 and the interval a/3] of the EPR transitions in the triplet states that was observed in the EPR spectra of the Cu3(mu3-S)2 cluster.  相似文献   

4.
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII(hfac)2(imVDZ)] and [MII(hfac)2(pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2′-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.  相似文献   

5.
Single crystal X-ray analysis of compounds H2pmdc.2H2O (1), KHpmdc (2), and K2pmdc (3) shows that the pyrimidine-4,6-dicarboxylate (pmdc) dianion presents an almost planar geometry which confers a potential capability to act as a bis-bidentate bridging ligand, and therefore, to construct 1-D metal complexes. Based on this assumption, we have designed the first six transition metal complexes based on this ligand of formula {[M(micro-pmdc)(H2O)2].H2O}n [M(II) = Fe (4), Co (5), Ni (6), Zn (7), Cu (8)] and {[Cu(micro-pmdc)(dpa)].4H2O}n (9) (dpa = 2,2'-dipyridylamine). The crystal structure of all of these complexes has been determined by single crystal X-ray measurements, except for compound whose X-ray powder diffraction pattern reveals that it is isostructural to compounds 4-7. The bis-chelating pmdc ligand bridges sequentially octahedrally coordinated M(II) centres leading to polymeric chains. The hexacoordination of the metal centres is completed by two water molecules in compounds 4-8 and by the two endocyclic-N atoms of a terminal dpa ligand in compound . Cryomagnetic susceptibility measurements show the occurrence of antiferromagnetic intrachain interactions for compounds and (J = -2.5 (4), -5.2 (6), -32.7 (8), and -0.9 (9) cm(-1)). Model calculations and analyses of the available experimental data have been used to examine the influence of several factors on the nature and magnitude of the magnetic coupling constants in pyrimidine bridged complexes, showing that metal deviation from the pyrimidine mean plane could lead to ferromagnetic behaviour.  相似文献   

6.
基于DFT-BS方法,在不同泛函方法和基组下计算[CuIIGdIII{pyCO(OEt)py C(OH)(OEt)py}3]2+及3d-Gd异金属配合物的磁耦合常数,结果表明,PBE0/TZVP(Gd为SARC-DKH-TZVP)水平可用于描述其磁学性质。顺磁中心CuII、GdIII与桥联配位氧原子间存在较强的轨道相互作用,其磁轨道主要由GdIII的4fz3、4fz(x2-y2)轨道、CuII的3dx2-y2轨道和桥联配位原子O的p轨道组成。顺磁中心CuII离子以自旋离域作用为主,GdIII离子以自旋极化作用为主,顺磁中心CuII自旋离域作用对桥联氧原子的影响大于顺磁中心GdIII的自旋极化作用。在同结构3d-Gd配合物中,随着MII离子未成对电子的增加,顺磁中心间自旋密度平方差越大,顺磁中心MII和GdIII之间的反铁磁性贡献越大,其磁耦合常数越小。  相似文献   

7.
The electronic structure of Ni(3)(dpa)(4)Cl(2) (1) has been investigated within the framework of the density functional theory (DFT), using two types of exchange-correlation functionals and various basis sets. The "broken-symmetry" approach proposed by Noodleman for the characterization of electronic states displaying an antiferromagnetic coupling has been applied to 1. All calculations lead to the conclusion that the ground state results from an antiferromagnetic coupling between the terminal Ni atoms, both displaying a high-spin electronic configuration. The central Ni atom is in a low-spin configuration, but is involved in a superexchange interaction connecting the two magnetic centers. These results are in agreement with the assignments recently proposed by the group of F. A. Cotton on the basis of magnetic measurements. It is shown that the ground state electronic configuration calculated for 1 provides the trinickel framework with some delocalized sigma bonding character. The observed geometry of 1 is accurately reproduced by the broken-symmetry solution. The doublet ground state assigned to the oxidized species [Ni(3)(dpa)(4)](3+) (2) and the dramatic contraction of the coordination sphere of the terminal metals observed upon oxidation are also confirmed by the calculations. However, the formal Ni-Ni bond order is not expected to increase in the oxidized species. The contraction of the Ni-Ni distance in 2 is shown to result in part from the vanishing of the important trans influence originating in the axial ligands, and for the rest from a more efficient shielding of the metal nuclear charge along the Ni-Ni-Ni axis. The conclusions deduced from the analysis of the bonding in 1 and 2 can be extended to their homologues with higher nuclearity. More specifically, it is predicted that the single occupancy of the most antibonding sigma orbital, extending over the whole metal framework, will provide the (Ni(p))(2)(p)(/(2)(p)(+1)+) chains with some delocalized bonding character and, possibly, with electrical conduction properties.  相似文献   

8.
Use of PhPyCNO (-)/X (-) "blends" (PhPyCNOH = phenyl 2-pyridyl ketoxime; X (-) = OH (-), alkanoato, ClO 4 (-)) in copper chemistry yielded trinuclear clusters that have been characterized as inverse-9-metallacrown-3 compounds and accommodate one or two guest ligands. The magnetic behavior showed a large antiferromagnetic interaction and a discrepancy between the low-temperature magnetic behavior observed experimentally and that predicted from a magnetic model. The discrepancy between the Brillouin curve and the experimental result provides clear evidence of the influence of the antisymmetric interaction. Introducing the antisymmetric terms derived from the fit of the susceptibility data into the magnetization formula caused the simulated curve to become nearly superimposable on the experimental one. The EPR data indicated that the compound [Cu 3(PhPyCNO) 3(mu 3-OH)(2,4,5-T) 2] ( 1), where 2,4,5-T is 2,4,5-trichlorophenoxyacetate, has isosceles or lower magnetic symmetry (delta not equal 0), that antisymmetric exchange is important ( G not equal 0), and that Delta E > hnu. The structures of the complexes 1 and [Cu 3(PhPyCNO) 3(mu 3-OH)(H 2O)(ClO 4) 2] ( 2) were determined using single-crystal X-ray crystallography. Theoretical calculations based on density functional theory were performed using the full crystal structures of 1, 2, [Cu 3(PhPyCNO) 3(OH)(CH 3OH) 2(ClO 4) 2] ( 3), and [Cu 3(PhPyCNO) 3(mu 3-OMe)(Cl)(ClO 4)] ( 4). The geometries of the model compounds [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 3-OH)(mu 2-HCOO)(HCOO)] ( 5), [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 2-HCOO)(HCOO)] (+) ( 6), [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 3-O)] (+) ( 7), and [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3] (3+) ( 8) were optimized at the same level of theory for both the doublet and quartet states, and vibrational analysis indicated that the resulting equilibrium geometries corresponded to minima on the potential energy surfaces. Both e g and t 2g magnetic orbitals seem to contribute to the magnetic exchange coupling. The latter contribution, although less important, might be due to overlap of the t 2g orbitals with the p-type orbitals of the central triply bridging oxide ligand, thereby affecting its displacement from the Cu 3 plane and contributing to the antiferromagnetic coupling. The crucial role of the triply bridging oxide (mu 3-O) ligand on the antiferromagnetic exchange coupling between the three Cu(II) magnetic centers is further evidenced by the excellent linear correlation of the coupling constant J with the distance of the mu 3-O ligand from the centroid of the Cu 3 triangle.  相似文献   

9.
The compound Cu3(dpa)4Cl2, 1 (dpa = the anion of dipyridylamine), which was first synthesized and characterized in 1990, has been structurally characterized in three new crystal forms having Cu...Cu separations of 2.47-2.49 A. Its magnetic properties have been studied fully. Reaction of Cu3(dpa)4Cl2 with 2 equiv of silver tetrafluoroborate yields Cu3(dpa)4(BF4)2 (2), a compound with a similar linear trinuclear structure but coordinated BF4 anions in each axial position and having shorter Cu...Cu distances of 2.40 A but similar magnetic properties. Least squares fitting of the magnetic susceptibility data for 1 and 2 gave isotropic g values of 2.007 and 2.130 and exchange parameters of -373 and -411 cm-1, respectively. This suggests the possible existence of an exchange pathway in which the metal atoms interact directly with each other.  相似文献   

10.
Of the known trinuclear dipyridylamido complexes of the first-row transition metals, M(3)(dpa)(4)Cl(2) (dpa is the anion of di(2-pyridyl)amine, M = Cr, Co, Ni, Cu), the one-electron-oxidation products of only Cr(3)(dpa)(4)Cl(2) and Co(3)(dpa)(4)Cl(2) have been isolated previously. Here we report one-electron-oxidation products of Ni(3)(dpa)(4)Cl(2) (1) and Cu(3)(dpa)(4)Cl(2) (3): Ni(3)(dpa)(4)(PF(6))(3) (2) and [Cu(3)(dpa)(4)Cl(2)]SbCl(6) (4). While there are no Ni-Ni bonds in 1, the Ni-Ni distances in 2 are 0.15 A shorter than those in 1, very suggestive of metal-metal bonding interactions. In contrast, the oxidation of 3 to 4 is accompanied by a lengthening of the Cu-Cu distances, as expected for an increase in electrostatic charge between positively charged nonbonded metal ions, which is further evidence against Cu-Cu bonding in either 3 or 4. A qualitative model of the electronic structures of all [M(3)(dpa)(4)Cl(2)](n+) (n = 0, 1) compounds is presented and discussed.  相似文献   

11.
Seven new polynuclear copper(II) complexes of formula [Cu(mu-pymca)2] (1) (pymca(-) = pyrimidine-2-carboxylato), [Cu(mu-pymca)Br] (2), [Cu(mu-pymca)Cl] (3), [Cu(mu-pymca)(SCN)(H2O)] x 4 H2O (4), [Cu(mu-pymca)N3] (5), [Cu2(mu1,5-dca)2(pymca)2] (6) (dca = dicyanamide), and K{[mu-Au(CN)2]2[(Cu(NH3)2)2(mu-pymca)]}[Au(CN)2]2 (7) have been synthesized by reactions of K-pymca with copper(II) ions in the presence of different counteranions. Compound 1 is a linear neutral chain with a carboxylato bridging ligand in a syn-anti coordination mode, whereas complexes 2 and 3 consist of cationic linear chains with cis and trans bis(chelating) pymca bridging ligands. Complex 4 adopts a helical pymca-bridged chain structure. In complex 5, zigzag pymca-bridged chains are connected by double end-on azide bridging ligands to afford a unique honeycomb layer structure. Complex 6 is a centrosymmetric dinuclear system with double mu 1,5-dicyanamide bridging ligands and pymca end-cap ligands. Complex 7 is made of pymca-bridged dinuclear [Cu(NH3)2(mu-pymca)Cu(NH3)2](3+) units connected by [Au(CN)2](-) anions to four other dinuclear units, giving rise to cationic (4,4) rectangular nets, which are linked by aurophilic interactions to afford a singular 3D network. Variable-temperature magnetic susceptibility measurements show that complex 1 exhibits a very weak antiferromagnetic coupling through the syn-anti (equatorial-axial) carboxylate bridge (J = -0.57 cm(-1)), whereas complexes 2-4 and 7 exhibit weak to strong antiferromagnetic couplings through the bis(chelating) pymca bridging ligand J = -17.5-276.1 cm(-1)). Quantum Monte Carlo methods have been used to analyze the experimental magnetic data for 5, leading to an antiferromagnetic coupling (J = -34 cm(-1)) through the pymca ligand and to a ferromagnetic coupling (J = 71 cm(-1)) through the azide bridging ligands. Complex 6 exhibits a very weak antiferromagnetic coupling through the dicyanamide bridging ligands (J = -5.1 cm(-1)). The magnitudes of the magnetic couplings in complexes 2-5 have been explained on the basis of the overlapping between magnetic orbitals and DFT theoretical calculations.  相似文献   

12.
In the recent years, a wide variety of transition metal complexes with the nitronyl radical ligands have been reported1,2. These systems display the various magnetic behaviors (ferro- or antiferro-magnetism) between the unpaired electrons on the radical ligands and on the paramagnetic metal ion center. However, few theoretical studies on the metal-radical complexes were reported and quite few are known about the nature of the exchange coupling interactions. In this work, we are interested i…  相似文献   

13.
First-principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2K code, have been carried out to study the A-B intersite charge transfer and the correlated electrical and magnetic properties of the perovskite BiCu(3)Fe(4)O(12), especially as regards the charge transfer. The results indicate that the charge transfer between A-site Cu and B-site Fe is by way of O 2p orbitals, and during this process orbital hybridization plays an important role. More importantly, the charge transfer is of 3d(9) + 4d(5)L(0.75) →3d(9)L + 4d(5) type (here L denotes an oxygen hole or a ligand hole). During this process, the magnetic interaction experiences a transition from Cu-Fe ferrimagnetic coupling to G-type antiferromagnetic coupling within B-site Fe with paramagnetic Cu(3+). As to electrical property, it undergoes a metal to insulator transition. All our calculated results are consistent with the available experimental results.  相似文献   

14.
草酸根桥联双核铜(Ⅱ)体系的磁耦合机理   总被引:2,自引:0,他引:2  
应用密度泛函理论,采用对称性破损方法分析了草酸根桥联双核铜(Ⅱ)体系的磁耦合机理。在该双核体系中,两铜(Ⅱ)原子的自旋布居大小相等,符号相反,磁中心间的作用为反铁磁耦合。草酸根桥配体向磁中心的电子转移使得铜(Ⅱ)原子的自旋显著离域,这种离域有利于反铁磁耦合,草酸根桥配体中的碳原子上出现自旋极化。当铜(Ⅱ)原子的配位环境由平面四方形向四面体或四方锥变化时,反铁磁耦合的强度减弱。体系的沿前轨道主要由铜(Ⅱ)原子d轨道和配体原子p轨道构成,这种构成利于草酸根桥配体与磁中心之间的电子转移。  相似文献   

15.
Tetranuclear [Co-Gd](2) complexes were prepared by using trianionic ligands possessing amide, imine, and phenol functions. The structural determinations show that the starting cobalt complexes present square planar or square pyramid environments that are preserved in the final tetranuclear [Co-Gd](2) complexes. These geometrical modifications of the cobalt coordination spheres induce changes in the cobalt spin ground states, going from S = 1/2 in the square planar to S = 3/2 for the square pyramid environments. Depending on the ligand, the complexes display antiferromagnetic or ferromagnetic Co(II)-Gd(III) interactions. The temperature dependence of the magnetic susceptibility-temperature products indicate that the Co-Gd interaction is ferromagnetic when high spin Co ions are concerned and antiferromagnetic in the case of low spin Co ions. This different magnetic behavior can be explained if we observe that the singly occupied σ d(x(2)-y(2)) orbital is populated (S = 3/2 Co ions) or unoccupied (S = 1/2 Co ions). Such an observation furnishes invaluable information for the understanding of the more general 3d-4f magnetic interactions.  相似文献   

16.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

17.
Three new cyanido-bridged heterometallic ReIVNiII and ReIVCuII one-dimensional systems were synthesized and extensively characterized both structurally and magnetically. Single-crystal X-ray diffraction analysis revealed that these compounds display a common topology, with chains composed of alternating [ReⅣCl4(CN)2]2- and [MⅡ(cyclam)]2+ (M = Ni in 1, Cu in 2) or [CuⅡ(N,N′-dimethylcyclam)]2+ (in 3) building units. Two different chain orientations with a tilt angle of ca. 51° to 55° are present in the crystal packing of these compounds. The magnetic susceptibility measurements suggest the presence of intrachain ferromagnetic interactions between the S = 3/2 ReIV centers and the 3d metal ions: S = 1 NiII or S = 1/2 CuII. At low temperature, a three-dimensional ordered magnetic phase induced by interchain antiferromagnetic interactions (antiferromagnetic for 1 and 2; canted antiferromagnetic for 3) is detected for the three compounds.  相似文献   

18.
The microscopic origin of the in-plane (Gx, Gy) and out-of-plane (Gz) Dzialoshinsky-Moriya (DM) exchange parameters is considered for the Cu3(II) clusters. For the systems with the d(x2-y2) ground state of the Cu ions, only Z components of the pair DM exchange parameters are active (Gz not equal to 0, G(x,y) = 0) in the cases of the orientations of the local anisotropy axes zi| (zi||Z) and perpendicular (zi perpendicular Z, xi||(- Z)) to the molecular trigonal Z axis. The dependences of the Gx, Gy, and Gz DM exchange parameters on the tilt of the local magnetic orbitals were obtained for the antiferromagnetic (AFM) clusters with the d(x2-y2) and d(z2) ground state of the Cu ions. The tilt of the local d(x2-y2) orbitals results in the change of the Gz parameter and appearance of the in-plane DM exchange interactions (Gx or/and Gy parameters). The dependence of the Gz and Gx,Gy DM exchange parameters on the tilt angle is essentially different. The in-plane DM exchange coupling (Gx,Gy parameters) can significantly exceed the out-of-plane DM coupling (Gz parameter). The nonzero Gz and Gx,Gy parameters can be positive or negative. For the {Cu3} nanomagnet with the d(x2-y2) ground state and relatively strong DM coupling, the model explains the three DM exchange parameters of the same value (|Gz| = |Gx| = |Gy|) by the small tilt of the local anisotropy axes zi of the CuO4 local groups of the trimer from the positions zi perpendicular Z. The dependence of the DM exchange parameters (Gz, Gx, Gy) on the tilt for the AFM Cu3 clusters with the d(z2) ground states of the Cu ions differs significantly from that for the AFM systems with the ground state d(x2-y2) of the individual ions. Large in-plane DM exchange parameters Gx or/and Gy result in the mixing of the 2(S = 1/2) and S = 3/2 states and zero-field splitting (ZFS) 2D(DM) of the excited S = 3/2 state. The DM exchange contribution 2D(DM) to ZFS of the excited S = 3/2 state possesses the significant dependence on the tilt of the local magnetic orbitals.  相似文献   

19.
A pyrazole based ditopic ligand (PzOAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and methyl ester of imino picolinic acid, reacts with Cu(NO3)2.6H2O to form a self-assembled, ferromagnetically coupled, alkoxide bridged tetranuclear homoleptic Cu(II) square grid-complex [Cu4(PzOAP)4(NO3)2] (NO3)2.4H2O (1) with a central Cu4[micro-O4] core, involving four ligand molecules. In the Cu4[micro-O4] core, out of four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by the nitrate ion. The complex 1 has been characterized structurally and magnetically. Although Cu-O-Cu bridge angles are too large (138-141 degrees) and Cu-Cu distances are short (4.043-4.131 A), suitable for propagation of expected antiferromagnetic exchange interactions within the grid, yet intramolecular ferromagnetic exchange (J = 5.38 cm(-1)) is present with S = 4/2 magnetic ground state. This ferromagnetic interaction is quite obvious from the bridging connections (d(x2-y2)) lying almost orthogonally between the metal centers. The exchange pathways parameters have been evaluated from density functional calculations.  相似文献   

20.
应用密度泛函UBP86方法对具有分子导线潜在应用性的金属串配合物Ni3(dpa)4Cl2进行研究,分析了外电场对配合物的几何构型和电子结构的影响.结果表明,零电场条件下存在沿着Ni63+轴及轴向配体Cl的Ni—Ni及Ni—Cl离域作用.沿金属轴Cl4→Cl5方向施加外电场,可使高电势端的Ni2—Cl4键长增大而Ni1—Ni2键长减小,低电势端的Ni3—Cl5键长减小而Ni1—Ni3键长增大;分子能量降低,偶极矩线性增大;HOMO与LUMO能隙减小,前线占据轨道分布向低电势方向移动且轨道能升高,空轨道分布则向高电势方向移动且轨道能降低,其中沿着金属轴方向离域的前线轨道分布及其轨道能随电场的变化尤为显著.在电场作用下,电荷分布发生改变,低电势端Cl5的负电荷向高电势端Cl4转移,但金属和桥联配体的电荷变化很小;同样,在电场作用下,配合物存在明显的结构变化和电子转移现象,呈现出类似导电过程中电子定向转移的变化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号