首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Copper complexes, [Cu(dm4bt)Cl(Hipht)] (1) and [{Cu(dm4bt)(H2O)(ipht)}4·2H2O] (2) (where dm4bt is 2,2′-dimethyl-4,4′-bithiazole, Hipht is hydrogen isophthalate and ipht is isophthalate) have been synthesized. These two complexes were characterized by IR, UV–Vis and EPR spectroscopy. Moreover; their single-crystal structures were studied by the X-ray diffraction method. Complex 1 has a monomer structure and copper has accepted a distorted square pyramidal structure. Isophthalic acid in 1 lost one of its protons and produced one bidentate carboxylate and one free carboxylic acid. Controlled deprotonation in the presence of ethylene diamine results in self-assemblies of 1 to form a tetramer complex of 2. Complex 2 has two kinds of spatial isomers which are resolved by EPR and X-ray.  相似文献   

2.
The preparation, crystal structures and spectroscopic characterization of four oxalate copper(II) complexes containing the 4,4′-dimethyl-2,2′-bipyridine (Mebpy) or di(2-pyridyl)sulfide (DPS) nitrogen ligands namely [μ-(ox){Cu(Mebpy)(NO3)(H2O)}2] (1), [μ-(ox){Cu(Mebpy)(ClO4)(H2O)}2] (2), [μ-(ox){Cu(DPS)(H2O)}2](ClO4)2 (3) and [Cu(DPS)(ox)(H2O)] · 2H2O (4) are described. X-ray diffraction measurements have shown that complexes 13 are binuclear, in which the oxalate anion bridges two Cu(II) centers, while the complex (4) is mononuclear and the oxalate anion adopts the terminal bidentate chelating coordination mode. In 1 and 2 the Cu(II) sites display a distorted octahedral geometry (4+2 environment) and in compounds 3 and 4 the Cu(II) centers exhibit a slightly distorted square pyramidal geometry. In addition, complexes 1 and 2 present a 2D supramolecular arrangement through hydrogen bonds between coordination water molecules and nitrate or perchlorate anions and π-stacking interaction between the pyridyl rings of Mebpy nitrogen ligands.  相似文献   

3.
Based on the versatile ligand 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (3,4′-Hbpt) (1), a series of coordination compounds [Ni(3,4′-Hbpt)(ip)] (2), [Ni(3,4′-Hbpt)2(tp)(H2O)2] (3), [Ni2(3,4′-Hbpt)(5-NO2-ip)2(H2O)4] (4) and [Ni(3,4′-Hbpt)(pm)0.5(H2O)3]·2H2O (5) have been hydrothermally constructed through R-phenyldicarboxyl (R = H, NO2 and COOH) intervention effect (ip = isophthalic anion, tp = terephthalic anion, 5-NO2-ip = 5-NO2-isophthalic anion, pm = pyromellitic anion). Structural analysis reveals that 3,4′-Hbpt adopts μ-Npy, Npy coordination modes in two typical conformations in these target coordination compounds. In cooperation with the auxiliary ligands benzenedicarboxylate connectors, a variety of Ni(II) coordination networks such as 2-D layer with (4, 4) topology (2) 1-D chain (3), honeycomb (4) and 2-D helical chains (5) have been assembled. Theoretical calculation based on density functional theory (DFT) for ligand (1) is also employed to explicate the stability of the different conformations. Moreover, thermal stability of these crystalline materials is explored by TG-DTG.  相似文献   

4.
Three novel polymers, {[Cd(m-bdc)(L)]·H2O}n (1), [Co(m-bdc)(L)0.5(H2O)]n (2) and [Zn5(L)2(p-bdc)5(H2O)]n (3) based on 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole (L) ligand and benzenedicarboxylate isomers, have been prepared and structurally characterized. Compound 1 exhibits a 2D architecture with (42·6)(42·67·8) topology, which is synthesized by L and 1,3-benzenedicarboxylate (m-bdc) ligands. Compound 2 is constructed from 1D chains that are linked by L ligands extending a 2D (4,4) grid. Compound 3 is a 3D framework with (43)(46·618·84) topology, which is composed of trinuclear clusters and five-coordinated metal centers joined through 1,4-benzenedicarboxylate (p-bdc) and L ligands. Moreover, the fluorescent properties of L ligand, compounds 1 and 3 are also determined.  相似文献   

5.
Three heterometallic 1-D polymers, [{Ni(1,10-phen)2(H2O)}2 {(Mo5O15)(4,4′-dbp)}·(5.75H2O)] (4,4′-dbp=O3PCH2C6H4C6H4CH2PO3) (1), [{Co(1,10-phen)2(H2O)}2 {(Mo5O15)(4,4′-dbp)}·(5.5H2O)] (2) and [{Ni(2,2′-bpy)3}{Ni(2,2′-bpy)2(H2O)} {(Mo5O15)(4,4′-dbp)}·(4.75H2O)] (3), have been synthesized under hydrothermal conditions. Their structures were determined by single crystal X-ray diffraction. The 1-D chains is constructed of [Mo5O15(4,4′-dbp)]4− units, which are further decorated and charge compensated by [M(1,10-phen)2] (M=Ni, Co) or [Ni(2,2′-bpy)2] subunits. The thermogravimetric analyses and magnetic properties of 1 and 2 were studied.  相似文献   

6.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

7.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

8.
The new cobalt (l) acyl compounds, [Co(PMe3)(CO)3(COMe)] 1, [Co(PPhMe2)(CO)3(COMe)] 2, [Co(P(4-Me-C6H4)3)(CO)3(COMe)] 3 and [Co(P(4-F-C6H4)3)(CO)3(COMe)] 4, have been prepared from [Na(Co(CO)4)]. The compound [Co(PCy3)(CO)3(COMe)] 5 has been prepared from [Co(PCy3)(CO)3(Me)] 6. The crystal structures of 5 and 6 are reported.  相似文献   

9.
Three rhenium(IV) mononuclear compounds of formulae [ReCl4(biimH2)] · 2DMF (1), [ReCl4(pyim)] · DMF (2) and [ReCl4(bipy)] (3) (biimH2 = 2,2′-biimidazole, pyim = 2-(2′-pyridyl)imidazole, bipy = 2,2′-bipyridine and DMF = N,N-dimethylformamide) have been prepared and characterized. The crystal structure of 2 was determined by single crystal X-ray diffraction. Compound 2 crystallizes in the monoclinic system with P21/c as space group. The rhenium atom is six-coordinated by four Cl atoms and two nitrogen atoms from a bidentate pyim ligand [average values of Re–Cl and Re–N bonds lengths being 2.330(2) and 2.117(4) Å, respectively]. The magnetic properties were investigated from susceptibility measurements performed on polycrystalline samples of 13 in the temperature range 1.9–300 K. The magnetic behaviour found is typical of antiferromagnetically coupled systems, and they exhibit susceptibility maxima at 2.8 (1 and 2) and 5.6 K (3). Short ReIV–Cl?Cl–ReIV contacts through space account for the antiferromagnetic behaviour observed.  相似文献   

10.
Solution phase reaction of silver nitrate with various hydrogen-bonding capable dipyridyl ligands has resulted in three 1-D coordination polymers and one discrete cationic species with diverse silver coordination spheres. [Ag(NO3)(4,4′-dpk)]n (1, 4,4′-dpk = 4,4′-dipyridylketone), {[Ag(4-bpmp)](NO3) · 6H2O} (2, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Ag2(NO3)(3-bpmp)(H2O)2]NO3}n (3, 3-bpmp = bis(3-pyridylmethyl)piperazine) all display 1-D coordination polymer chain or ribbon motifs. Long-range Ag?O interactions and/or hydrogen-bonding promote the formation of different supramolecular aggregations such as a 2-D double layer slab in 1, a threefold interpenetrated 3-D diamondoid network in 2, and a 2-D single layer in 3. Compound 2 manifests “infinite” 1-D T(5)2 water molecule tapes within its incipient voids. {[Ag(2,4′-pmpp)2](NO3) · H2O} (4, 2,4′-pmpp = 2-pyridyl(4′-methylpyridyl)piperazine) contains discrete cationic species connected by nitrate-mediated Ag?O interactions into a supramolecular 1-D zig-zag chain. Complexes 1 and 4 undergo weak blue–violet luminescence upon irradiation with ultraviolet light.  相似文献   

11.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

12.
Four new luminescent complexes, namely, [Eu(aba)2(NO3)(C2H5OH)2] (1), [Eu(aba)3(H2O)2]·0.5 (4, 4′-bpy)·2H2O (2), [Eu2(aba)4(2, 2′-bpy)2(NO3)2]·4H2O (3) and [Tb2(aba)4(phen)2(NO3)2]·2C2H5OH (4) were obtained by treating Ln(NO3)3·6H2O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4′-bpy=4, 4′-bipyridine, 2, 2′-bpy=2, 2′-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed.  相似文献   

13.
Syntheses for [(diphenylphosphinoyl)methyl]-4,5-dihydrooxazole (2) and [(diarylphosphinoyl)methyl]benzoxazoles [aryl = phenyl (3), tolyl (4), 2-trifluoromethylphenyl (5) and 3,5-bis(trifluoromethyl)phenyl (6)] have been developed. Each ligand has been characterized by spectroscopic methods and single crystal X-ray diffraction analyses have been completed for 2, 3, 4 and 5. The coordination chemistry of the ligands with Nd(NO3)3 and Yb(NO3)3 has been examined and structure determinations for [Nd(2)2(NO3)3(CH3OH)], [Nd(2)2(NO3)3], [Yb(3)2(NO3)3(H2O)]·0.5(CH3OH), [Nd(3)2(NO3)3]·3(CHCl3), [Nd(4)2(NO3)3(H2O)], [Yb(4)2(NO3)3(H2O)] and [Yb(5)2(NO3)3(H2O)]·0.5(CH3CN) are reported. Depending upon conditions, the ligands act as monodentate PO or bidentate, chelating PO,N donors.  相似文献   

14.
N,N′,N′′,N′′′-Tetrakis(3-carboxy-propionyl)-1,6,20,25-tetraaza-[6.1.6.1] paracyclophane, H4cp has been complexed with metal (Zn(II) and Cd(II)) 2,2-bipyridyls. The resulting complexes of the composition [{Zn(2,2-bpy)}2(cp)]n·4H2O 1 and [{Cd(2,2-bpy)}2(cp)]n·5H2O 2 (2,2-bpy = 2,2-bipyridine) have been characterized using spectroscopic (IR, solid state UV–Vis), elemental analysis and single-crystal X-ray diffraction measurements. In these complexes the cyclophane coordinates in different modes, and in complex 2, Cd(II) is hepta-coordinated. However, under harsh reaction conditions (using excess nitric acid and a longer reaction time) debranching of the cyclophane is observed in the reaction of Zn(2,2-bpy)(NO3)2 with H4cp, and a complex of the composition [Zn(2,2-bpy)(Suc)]n3 (suc = succinate) is isolated. Using non-covalent interactions, complexes 1 and 2 provide 3D supramolecular structures, whereas an infinite 1D chain structure is observed for complex 3. The thermal and photoluminescence properties of the complexes have also been studied.  相似文献   

15.
Reaction of Ln(NO3)3·6H2O with H2L [H2L=N,N′-bis(salicylidene)propane-1,2-diamine] gives rise to five new coordination polymers, viz. [Pr(H2L)(NO3)3(MeOH)]n (1) and [Ln(H2L)1.5(NO3)3]n [Ln=La (2), Eu (3), Sm (4) and Gd (5)]. Crystal structural analysis reveals that H2L effectively functions as a bridging ligand forming one-dimensional (1D) chain and two-dimensional (2D) open-framework polymers. Solid-state fluorescence spectra of 3 and 4 exhibit typical red fluorescence of Eu(III) and Sm(III) ions at room temperature while 2 emits blue fluorescence of ligand H2L. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of 5. The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

16.
The bivalent zinc and cadmium complexes of two Schiff bases N-(2-pyridylmethyl)pyridine-2-carbaldimine (L1), N-(2-pyridylmethyl)pyridine-2-methylketimine (L2), tridentate ligands with an N3 chromophore and coordinating with two five-membered chelate rings, were synthesized. Complexes [Zn(L1)(NO3)2] (1), [Zn(L2)(NO3)2] (2), [Cd(L1)(NO3)2(H2O)] (3) and [Cd(L2)(NO3)2(CH3OH)] (4) were characterized by X-ray crystallography. In 1 and 2, Zn(II) has a distorted square-pyramidal geometry where as in 3 and 4, Cd(II) possesses a pseudo-pentagonal-bipyramidal geometry. The following trends in the bond lengths are observed: M–Nim < M–Npy; Zn–N > Zn–O; Cd–N < Cd–O. The final residues from the thermogravimetric analysis are ZnO and CdO, the SEM studies revealed, respectively, their porous and spherical natures. The average activation energy (E) for the loss of pyridine rings obtained from the Friedman fitting of the DSC data, for 1, 2, 3, and 4 are 193.8(2), 114.5(3), 127.1(4), and 63.7(3) kJ mol−1 and their logarithmic pre-exponential factor (A) are 11.22, 5.31, 6.88, and 2.09, respectively.  相似文献   

17.
Three ligands with flexible bis-terdentate coordination sites, di(2-pyridylcarbaldehyde)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L1), di(2-acetylpyridyl)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L2) and di(2-pyridylketone)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L3) have been easily prepared. Dinuclear double-stranded helicates Co2(L1)2(ClO4)2(C2H5OH)2(H2O)2 (1), Co2(HL2)(L2)(ClO4)3(C2H5OH)2(H2O)2 (2) and Co2(HL3)(L3)(ClO4)3(H2O)4 (3) based on the ligands, H2L13, respectively, have been obtained via self-assembly, their structures were determined by FT-IR, Elemental Analysis, ESI-MS and X-ray diffraction method.  相似文献   

18.
We have designed and synthesized three new metal-1,1′-ferrocenedicarboxylate complexes containing tetrametallic macrocyclic building units, namely, [Cd22-O2CFcCO22)2(phen)2(H2O)2] · 4CH3OH (1) (Fc = (η5-C5H4)Fe(C5H45), phen = 1,10-phenanthroline), {[Cd(η2-O2CFcCO2)(pebbm)(H2O)] · 2H2O}n (2) (pebbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) and {[Cd(η2-O2CFcCO22)(prbbm)(H2O)] · 3H2O}n (3) (prbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole). Compound 1 is a 0-D discrete tetrametallic macrocyclic framework. Compound 2 features an infinite 1-D ribbon of rings structure constructed by the subsidiary ligands pebbm connecting tetrametallic macrocyclic building units. For 3, its tetrametallic macrocyclic building units are linked by the subsidiary ligands prbbm to form a 2-D network structure. The structural features of these complexes indicate that the ferrocenedicarboxylate tetrametallic macrocycle can be used as a successful molecular building unit and the shapes and conformational flexibility of subsidiary ligands play a crucial role in the manipulation of the configuration of the resultant MOFs. Their fluorescence spectra in solid state at room temperature suggest that the fluorescence emissions of 1-3 are ruled by 1,1′-ferrocenedicarboxylate ligand.  相似文献   

19.
By using the neutral bidentate nitrogen-containing ligands; bis(3,5-dimethyl-1-pyrazolyl)methane (L0″), bis(3,5-diisopropyl-1-pyrazolyl)methane (L1″), bis(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3″), and bis(3,5-ditertiary-butyl-1-pyrazolyl)methane (L4″), the copper(II) nitrato complexes [Cu(L0″)2(NO3)]NO3 (1NO3), [Cu(L0″)(NO3)2] (2), [Cu(L1″)(NO3)2] (3), [Cu(L3″)(NO3)2] (4), and [Cu(L4″)(NO3)2] (5), chloro complexes [Cu(L0″)2Cl]2(CuCl4) (6CuCl4), [Cu(L0″)2Cl]2(Cu2Cl6) (6Cu2Cl6), [Cu(L1″)Cl2] (7), and [Cu(L3″)Cl2] (8), nitrito complexes [Cu(L0″)(ONO)2] (9) and [Cu(L1″)(ONO)2] (10), and the complexes with perchlorate ions [Cu(L0″)2(CH3OH)](ClO4)2 (11ClO4) and [Cu(L1″)2(H2O)](ClO4)2 (12ClO4) were systematically synthesized and fully characterized by X-ray crystallography and by IR, far-IR, UV–Vis absorption, and ESR spectroscopy. In comparison with the obtained complexes with four bis(pyrazolyl)methanes having different bulkiness at pyrazolyl rings, the second coordination sphere effects on the ligands are discussed in detail. Moreover, the structures and physicochemical properties of these obtained complexes are compared with those of the related complexes with the neutral tridentate tris(pyrazolyl)methane ligand.  相似文献   

20.
By using 2,2′-bipyridine N-oxide (bipyO) and 2,2′-bipyridine N,N′-dioxide (bipyO2), three new uranyl complexes [UO2(bipyO)SO4]·H2O (1), [UO2(bipyO)(OH)(NO3)]2·H2O (2) and [UO2(bipyO2)H2O](ClO4)2·(3) were synthesized using uranyl salts including non-coordinating or weakly coordinating power of the ClO4 anion and the strongly coordinating power of NO3 and SO42− anions. All of the compounds were characterized by CHN microanalytical procedures, infrared and luminescence spectroscopy and by single crystal X-ray diffraction. Spectroscopic studies indicate that the bipyO is bound to the uranyl group via the nitrogen and oxygen atoms. Structural analyses revealed that overall bonding pattern is different in each case: 1 is a polymer; in 2 dimeric complex molecules are formed, whereas 3 is composed of monomers. In all of the complexes, the uranium atom is in a seven-coordinate environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号