首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The reaction of 3‐amino‐1,2,4‐triazole ( 1 ) with N‐arylmaleimides leads to azolopyrimidines 4 and 5 . The 2‐aminobenzimidazole ( 2 ) in the reaction with 3 gives the pyrimidobenzimidazoles 6 . In similar conditions, the reaction of amine 2 with maleic anhydride ( 7 ) leads to formation of 2‐oxo‐1,2,3,4‐tetrahydropyrimido[1,2‐a]benzimidazole‐4‐carboxylic acid ( 8 ). The structures of 4 , 5 , 6 , and 8 were proved by X‐Ray and NOE NMR measurements. J. Heterocyclic Chem., (2011)  相似文献   

2.
The reaction of electron-deficient cyclopropane derivatives, cis-1-methoxycarbonyl-2-aryl-6,6-dimethyl-5,7dioxospiro[2,5]octa-4,8-diones with benzoylmethylenetriphenylarsorane (2) and methoxycarbonylmethylenetriphenylarsorane (4) was found to form cis,trans-l-methoxycarbonyl-2-aryl-3-benzoyl-7,7-dimethyl-6,8-dioxospiro[3,5]nona-5,9-dione (3a-3e) and trans,cis,trans-5-[2‘-methoxycarbonyl-2‘-(triphenylarsoranylidene)acetyl]-6oxo-3-aryl-tetrahydro-pyran-2,4-dicarboxylic acid dimethyl esters (5a-5c) respectively with high stereoselectivity. The possible reaction mechanisms for the formation of the different products were also orooosed.  相似文献   

3.
The novel heterocyclizations of ethyl 5‐(hydrazinocarbonyl)‐2,4‐dimethyl‐1H‐pyrrole‐3‐carboxylate are developed. New derivatives of ethyl esters of 4‐R‐6,8‐dimethyl‐1‐oxo‐1,2‐dyhidropyrrolo[1,2‐d][1,2,4]triazine‐7‐carboxylic acids were obtained. The in vitro anticancer and antibacterial activities of the synthesized compounds were revealed. The most potent antibacterial compound appeared to be 1.3 inhibiting Staphylococcus aureus. Pyrrolo[1,2‐d][1,2,4]triazine 2.15 showed significant antifungal activity against Candida tenuis. The anticancer activity of the synthesized compounds was determined.  相似文献   

4.
The syntheses of 2‐amino‐s‐triazino[1,2‐a]benzimidazoles from 2‐guanidinobenzimidazoles were successfully carried out by a ring annelation reaction. The regiochemistry of the ring closure of 5‐methyl‐2‐guanidinobenzimidazole with diethyl azodicarboxylate, aldehydes, acetone, diethyl ethoxymethylenemalonate and orthoesters, leading to the formation of s‐triazine ring was studied. High regioselectivity was not observed in any of these reactions. However, the synthesis of s‐triazino[1,2‐a]benzimidazole system was found to be more regioselective than its 3,4‐dihydro analogue. NOESY experiment indicated that the compound, 2‐amino‐4,4‐dimethyl‐3,4‐dihydro‐s‐triazino[1,2‐a]benzimidazole existed predominantly as the 3,4‐dihydro tautomer in dimethyl sulfoxide. It was found to inhibit bovine dihydrofolate reductase with IC50 10.9 μM.  相似文献   

5.
A series of 1‐[(4‐hydroxy‐2‐oxo‐1‐phenyl‐1,2‐dihydroquinolin‐3‐yl)carbonyl]‐4‐(substituted) piperazines 3a–c and methyl 2‐[(4‐hydroxy‐2‐oxo‐1‐phenyl‐1,2‐dihydroquinolin‐3‐yl)carbonylamino] alkanoates 5a–d has been developed by the direct condensation of ethyl [4‐hydroxy‐2‐oxo‐1‐phenyl‐1,2‐dihydro‐3‐quinoline] carboxylate 2 with N 1‐monosubstituted piperazine hydrochlorides or amino acid ester hydrochloride in the presence of triethyl amine. The quinolone amino acid esters 5a–d were the key intermediate for the preparation of a series of 1‐[2‐((4‐hydroxy‐2‐oxo‐1‐phenyl‐1,2‐dihydroquinolin‐3‐yl)carbonylamino)alkylcarbony]‐4‐substituted piperazine derivatives 8–11 (a‐d) via azide coupling method with amino acid ester hydrochloride.  相似文献   

6.
A one‐step ‘ring switching’ transformation of (S)‐3‐[(dimethylamino)methylidene]‐5‐(methoxycarbonyl)tetrahydrofuran‐2‐one ( 4 ) with 2‐pyridineacetic acid derivatives ( 5–7 ) and 2‐aminopyridines ( 8, 9 ) afforded the corresponding 3‐(4‐oxo‐4H‐quinolizinyl‐3)‐ (15–17) and 3‐(4‐oxo‐4H‐pyridino[1,2‐a]pyrimidinyl‐3)‐2‐hydroxypropanoates ( 18, 19 ), respectively.  相似文献   

7.
The pseudo‐Michael reaction of 1‐aryl‐2‐aminoimidazolines‐2 with diethyl ethoxymethylenemalonate (DEEM) was investigated. Extensive structural studies were performed to confirm the reaction course. For derivatives with N1 aromatic substituents, it was found that the reaction course was temperature dependent. When the reaction temperature was held at ?10 °C only the formation of 1‐aryl‐7(1H)‐oxo‐2,3‐dihydroimi‐dazo[1,2‐a]pyrimidine‐6‐carboxylates ( 4 ) was observed in contrast to earlier suggestions. Under the room temperature conditions, the same reaction yielded mixtures, with varying ratio, of isomeric 1‐aryl‐7(1H)‐oxo‐ ( 4a‐4f ) and 1‐aryl‐5(1H)‐oxo‐2,3‐dihydroimidazo[1,2‐a]pyrimidine‐6‐carboxylates ( 5a‐5f ). The molecular structure of selected isomers, 4b and 5c , was confirmed by X‐ray crystallography. Frontal chro‐matography with delivery from the edge was applied for the separation of the isomeric esters. The isomer ratio of the reaction products depended on the character of the substituents on the phenyl ring. The 1‐aryl‐7(1H)‐oxo‐carboxylates ( 4a‐4f ) were preferably when the phenyl ring contained H, 4‐CH3, 4‐OCH3 and 3,4‐Cl2 substituents. Chloro substitution at either position 3 or 4 in the phenyl ring favored the formation of isomers 5a‐5f . The isomer ratios were confirmed both by 1H NMR and chromatography. The reaction of the respective hydrobromides of 1‐aryl‐2‐aminoimidazoline‐2 with DEEM, in the presence of triethylamine, gave selectively 5(1H)‐oxo‐esters ( 5a‐5f ).  相似文献   

8.
Condensation of 4‐aminoantipyrine with ethyl acetoacetate, ethyl benzoylacetate, and ethyl cyanoacetate furnished the corresponding ethyl 3‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)aminoacrylate and 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide derivatives. The aminoacrylates derivatives react with acetonitrile and sodium hydride to give 2‐amino‐6‐methyl‐1‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)‐4‐pyridone. Reaction of the cyanoacetamide derivative with dimethylformamide‐dimethylacetal (DMF‐DMA) afforded 2‐cyano‐N‐[1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐pyrazol‐4‐yl]‐2‐(N,N‐dimethylamino)methylene acetamide in high yield. Treatment of the latter with 5‐aminopyrazole derivatives afforded the corresponding pyrazolo[2,3‐a]pyrimidines. 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide also reacts with heterocyclic diazonium salts to give the corresponding pyrazolo[5,1‐c]‐1,2,4‐triazine derivatives. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:508–514, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20046  相似文献   

9.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ), 1H‐benzimidazole ( 1c ), 1‐methyl‐1H‐imidazole ( 1d ), and 1‐methyl‐1H‐benzimidazole ( 1f ) with methyl 4‐(bromomethyl)benzoate ( 2 ), symmetrically and nonsymmetrically 4‐(methoxycarbonyl)benzyl‐substituted N‐heterocyclic carbene (NHC) precursors, 3a – 3f , were synthesized. These NHC precursors were then reacted with silver(I) acetate (AgOAc) to yield the NHC–silver acetate complexes (acetato‐κO){1,3‐bis[4‐(methoxycarbonyl)benzyl]imidazol‐2‐ylidene}silver ( 4a ), (acetato‐κO){4,5‐dichloro‐1,3‐bis[4‐(methoxycarbonyl)benzyl]‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4b ), (acetato‐κO){1,3‐bis[4‐(methoxycarbonyl)benzyl]‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl}silver ( 4c ), (acetato‐κO){1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4d ), (acetato‐κO){4,5‐dichloro‐1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4e ), and (acetato‐κO){1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl}silver ( 4f ), respectively. The three NHC–AgOAc complexes 4a, 4c , and 4d were characterized by single‐crystal X‐ray diffraction. All compounds studied in this work were preliminarily screened for their antimicrobial activities in vitro against Gram‐positive bacteria Staphylococcus aureus, and Gram‐negative bacteria Escherichia coli using the qualitative disk‐diffusion method. All NHC–AgOAc complexes exhibited weak‐to‐medium antibacterial activity with areas of clearance ranging from 4 to 7 mm at the highest amount used, while the NHC precursors showed significantly lower activity. In addition, NHC–AgOAc complexes 4a and 4b , and 4d – 4f exhibited in preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 medium‐to‐high cytotoxicities with IC50 values ranging from 3.3±0.4 to 68.3±1 μM .  相似文献   

10.
Reaction of 3,5‐diaminothiophene‐2‐carbonitrile derivatives 3a‐c with ethoxycarbonylmethyl isothiocyanate and/or N‐[bis(methylthio)methylene]glycine ethyl ester led to formation of 7‐substituted‐8‐amino‐5‐thioxo‐6H‐imidazo[1,2:1′,6′]pyrimido[5,4‐b]thiophene‐2(3H)‐one derivatives 6a‐c and 7‐substituted‐8‐amino‐5‐(methylthio)imidazo[1,2:1′,6′]pyrimido[5,4‐b]thiophene‐2(3H)‐one 7a‐c , respectively. Also, the synthetic potential of the β‐enaminonitrile moiety in 3a‐c has been explored; it proved to be a promising candiate for the synthesis of 1,6‐disubstituted‐2,4‐diamino‐7,8‐dihydro‐8‐oxopyrrolo[1,2‐a]thieno[2,3‐e]pyrimidine derivatives 10a‐f and pyrido[2′,3′:6,5]pyrimido[3,4‐a]benzimidazole derivatives 12a,b .  相似文献   

11.
New approaches for the synthesis of some heterocyclic compounds, such as the pyridopyrimidodiazepine derivative 3 , pyrazolopyrido[1,2‐a]pyrimidine derivative 4 , tetrazolo[1.5‐a][1,8]naphthyridine derivative 9 , pyrazolylpyrido[1,2‐a]pyrimidine derivatives 10a , 10b , 12 , pyrrolopyrido[1,2‐a]pyrimidine derivatives 14a , 14b , 14c , 14d , and 16a , 16b , starting from 2‐chloro‐4H‐4‐oxo‐pyrido[1,2‐a]pyrimidine ( 1 ), are described.  相似文献   

12.
Homophthalic acid and its pyrido and 8‐methylquinolino analogues with dimethylformamide/phosphoryl chloride at 0 ° give the appropriate 4‐(dimethylaminomethylene)isochroman‐1,3‐dione ( 2a, 2b, 2c , respectively). Under the literature conditions for conversion of 2a to 2‐methyl‐1‐oxo‐1,2‐dihydroisoquinoline‐4‐carboxylic acid ( 3a ), the aza analogues give instead 7‐hydroxy‐5‐oxo‐5H‐pyrano[4,3‐b]pyridine‐8‐carbox‐aldehyde ( 5b ) and 3‐hydroxy‐6‐methyl‐1‐oxo‐1H‐pyrano[4,3‐b]quinoline‐4‐carboxaldehyde ( 5c ), respectively. Modified conditions were required to isolate analogues 3b and 3c . Further, while reaction of 2a with hydrogen chloride in methanol gave the known change to methyl 1‐oxo‐1H‐isochromene‐4‐carboxylate ( 4 ), 2b and 2c gave only products of oxa‐ring cleavage. Methyl 2‐(cis‐2‐hydroxyvinyl)‐8‐methylquinoline‐3‐carboxylate ( 8 ) was the main product from 2c , while a novel quinolizinium species ( 11 ) was formed in good yield from 2b.  相似文献   

13.
The synthesis of a diaryl diselenide that contains 2,6‐dicarboxylic acid groups, 2,2′‐diselanediylbis(5‐tert‐butylisophthalic acid) ( 10 ), is described. Diselenide 10 undergoes intramolecular cyclization in methanol to form a cyclic selenenate ester, 5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylic acid ( 11 ). The cyclization reaction proceeds more rapidly in the presence of organic bases, such as pyridine, adenine, and 4,4′‐bipyridine, to form pyridinium 5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylate ( 14 ), adeninium 5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylate ( 15 ), and 4,4′‐bipyridiniumbis(5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylate) ( 16 ), respectively. However, 2,2′‐diselanediyldibenzoic acid ( 22 ) does not undergo cyclization under similar conditions. Structural studies on cyclic selenenate esters 14 – 16 revealed that the Se???O (COO?) secondary distances (2.170, 2.075, and 2.176 Å) were significantly shorter than the corresponding Se???O distances (2.465, 2.472, and 2.435 Å) observed for the selenenate esters stabilized by the neutral donors (CHO, COOH, and COOEt). 1H, 13C, and 77Se NMR spectroscopy of compounds 11 and 14 – 16 reveal that the aryl protons of compound 11 and the organic cations of compounds 14 – 16 exchange between the two carboxylate groups via a hypercoordinate intermediate. The corresponding hypercoordinate intermediate ( 14 b , pyridinium selenuranide) for compound 14 was detected at low temperatures using 77Se NMR spectroscopy. The presumed hypercoordinate intermediates in the carboxylate‐exchange reactions at the selenium(II) center for a set of model reactions were optimized using DFT‐B3LYP/6–311+g(d) calculations and their structural features compared with the X‐ray structure of anionic selenenate esters 14 – 16 .  相似文献   

14.
Reactions of magnesium 3‐tert‐butyl‐8‐R‐4‐oxo‐4H‐pyrazolo[5,1‐c][1,2,4]triazin‐1‐ides (R = CN, CO2Et) with AlkMgBr led to nucleophilic additions to either side chain or triazine core, with selectivity being dependent on the nature of substituents, as well as on the solvents used. Previously inaccessible C8‐functionalized and C4‐functionalized pyrazolo[5,1‐c][1,2,4]triazines and 3‐tert‐butyl‐3‐ethyl‐4‐oxo‐1,2,3,4‐tetrahydropyrazolo[5,1‐c][1,2,4]triazine were synthesized, and their reactivity and spectral data discussed.  相似文献   

15.
Reaction of 1‐amino‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (1) with dimethylformamide‐dimethylacetal (DMF‐DMA) gave 1 ‐[N,N‐(dimethylaminomethylene)amino]‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (2). Compounds (1) reacted with triethylorthoformate yielding 1‐[N‐(ethoxymethylene)amino]‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (3). 3‐Amino‐4‐imino‐5‐aryl‐6‐cyanopyrimido[5′,4′:5,6]pyrido[1,2‐α] benzimidazole (4) was synthesized via condensation of either (2) or (3) with hydrazine hydrate. Reactions of (4) with acetic anhydride, ethyl chloroformate or aryl isothiocyanate yielded the respective derivative of the new ring system namely 1,2,4‐triazolo[2″,3″:6′,1′]pyrimido[4′,5′:2,3]pyrido[1,2‐a]benzimidazole (5–7).  相似文献   

16.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

17.
2‐Bromocyclododecanone was utilized as precursor to synthesize polyfused heterocyclic cyclododecane ring systems. Transformation of 2‐bromocyclododecanone ( 5 ) with 1H‐benzimidazole‐2‐thiole ( 6 ), benzo[d]thiazole‐2‐thiol ( 9 ), 2‐naphthol ( 12 ), and thiophenol ( 15 ) afforded thiazolo[2,3‐b]benzimidazole ( 8 ), thiazolo[2,3‐b]benzothaizole derivative ( 11 ) naphtho[1,2‐d]furan derivative ( 14 ) and 2‐(phenylthio)cyclododecanone ( 16 ), respectively.  相似文献   

18.
The synthesis of ethyl 6‐aryl‐4‐oxo‐4,6‐dihdro‐1(12)(13)H‐pyrimido[2′,1′:4,5][1,3,5]triazino[1,2‐a]‐benzimidazole‐3‐carboxylates ( 4a‐p ) was described via pyrimidine ring annulation to 4‐aryl‐3,4‐dihydro[1,3,5]triazino[1,2‐a]benzimidazole‐2‐amines ( 2a‐p ) which were obtained from 2‐guanidinobenzimidazole ( 1 ). Tautomerism in the prepared compounds was investigated using nmr spectroscopy. Compounds 2a‐p were found to be present in dimethyl sulfoxide solution predominantly as 3,4‐dihyhydro tautomeric form. Compounds 4a‐p existed in dynamic equilibrium of 1‐, 12‐ and 13H‐forms. It was found that methylation of 4a‐d led to 13‐methyl substituted derivatives 9a‐d exclusively.  相似文献   

19.
The synthesis and structural properties of two kinds of thiosemicarbazide derivatives ( 2a‐c and 3a‐c ) and one kind of semicarbazide derivatives ( 4a, 4b ) have been described. These compounds were synthesized by treating 2‐(4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl)acetohydrazides ( 1a‐c ) with benzyl isothiocyanate, 3‐florophenyl isothiocyanate and benzylisocyanate, respectively. The synthesis of 4‐amino‐3‐alkyl‐1‐[(4‐alkyl‐5‐mercapto(or 5‐oxo)‐4H‐1,2,4‐triazol‐3‐yl)methyl]‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ones ( 5a‐c, 6a‐c and 7 ) have been performed from the reaction with sodium hydroxide. On the other hand, the acidic treatment of compounds 2b, 3b and 4b has afforded 4‐amino‐3‐(4‐chlorobenzyl)‐1‐[(5‐alkylamino‐1,3,4‐thidazol(or 1,3,4‐oxazol)‐2‐yl)methyl]‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ones ( 8, 9 and 10 ). The condensation of thiosemi(or semi)carbazide derivatives ( 2a‐c, 3c and 4b ) with 4‐chlorophenacylbromide have resulted in the formation of 2‐[4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl]‐N′‐(3,4‐dialkyl‐1,3‐thiazol(or oxazol)‐2(3H)‐yliden]acetohydrazides ( 11a‐c, 12, 13 ), while their condensation with chloroacetic acid has produced 2‐[4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl]‐N′‐[3‐(3‐alkyl)]‐4‐oxo‐1,3‐thiazolidin(or oxazolidin)‐2‐yliden}acetohydrazides ( 14, 15 and 16 ). The spectral data and elemental analyses have support the proposed structures.  相似文献   

20.
The cyclization mechanism for the title compound ( 2 ) reacting with one‐carbon fragment reagents or nitrous acid to afford heterobicyclic compounds 6‐amino‐3‐substituted‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐ones ( 3a~d ) or 6‐amino‐1,2,3,4‐tetrazolo[5,1‐f][1,2,4]triazin‐8(7H)‐one ( 4 ), respectively, is explored in this paper. When 3‐amino‐2‐benzyl‐6‐hydrazino‐1,2,4‐triazin‐5(2H)‐one ( 10 ), the N‐2 benzylated derivative of 2 , is treated under the same conditions, ring cyclization does not occur; instead, 3‐amino‐2‐benzyl‐6‐substituted‐1,2,4‐triazin‐5(2H)‐ones ( 11,12,14 ) and 2‐N‐(2‐amino‐1‐benzyl‐4‐oxo‐1,2,4‐triazin‐5‐yl)semicarbazide ( 13 ) are formed. Alternatively, when 3‐amino‐6‐hydrazino‐2‐[(2‐hydroxyethoxy)methyl]‐1,2,4‐triazin‐5(2H)‐one ( 16 ), a compound bearing the 2‐[(2‐hydroxyethoxy)methyl] side‐chain at N‐2 of 2 by an N? C? O bond, reacts with glacial acetic acid or nitrous acid, the side‐chain is cleaved through acidolysis to affford the ring‐closed compound 6‐amino‐3‐methyl‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐one ( 3b ) or compound 4 , respectively. From these results, we suggest a cyclization mechanism that the ring cyclization is dependent on the aromatization of the 1,2,4‐triazine ring, which influence the reactivity and reaction behavior of the π‐deficient 1,2,4‐triazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号