首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
2‐(2‐(1‐(1H‐Indol‐3‐yl)ethylidene)‐hydrazinyl)‐4‐substituted 5‐(aryldiazenyl)thiazoles and 5‐((1‐(1H‐indol‐3‐yl)ethylidene)hydrazono)‐2‐substituted‐4‐phenyl‐4,5‐dihydro‐1,3,4‐thiadiazoles were synthesized via reaction of hydrazonoyl halides and 2‐(1‐(1H‐indol‐3‐yl)ethylidene)hydrazine‐1‐carbothioamide and alkyl 2‐(1‐(1H‐indol‐3‐yl)ethylidene)hydrazine‐1‐carbodithioate in ethanolic triethylamine. Structures of the newly synthesis were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

2.
A simple and efficient process for the synthesis of novel heterocycles starting from thiocarbohydrazide was reported. Reaction of 2‐acetylbenzofuran ( 1 ) and thiocarbohydrazide ( 2 ) in ethanol containing acetic acid produced the corresponding thiocarbohydrazone 3 in 86% yield. Reaction of 3 and isatin ( 4 ) gave N,2‐bis(2‐oxoindolin‐3‐ylidene)hydrazine‐1‐carbothiohydrazine ( 6 ) in 65% yield, rather than the expected product, 3‐[(1‐methyl‐1‐benzofur‐2‐ylmethylidene)amino]‐1‐{[(3Z)‐2‐oxo‐2,3‐dihydro‐1H‐indol‐3‐ylidene]amino}thiourea ( 5 ). Reaction of 2‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazine carbothioamide ( 9 ) and chloroacetic acid or hydrazonoyl chloride 11 in basic medium gave (Z)‐2‐((E)‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazono)thiazolidin‐4‐one ( 10 ) or 2‐((E)‐2‐((3‐(benzofuran‐2‐yl)‐1‐ phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazinyl)‐4‐((E)‐(4‐fluorophenyl)diazenyl)‐5‐methylthiazole ( 12 ) in 62% or 74%, respectively.  相似文献   

3.
Heterocyclization of bis(2‐oxo‐indol‐3‐ylidene)‐galactaric acid hydrazide ( 3 ) with a variety of one‐nitrogen cyclizing agents gave the corresponding 1,4‐bis{1,2,4‐triazino[5,6‐b]indol‐3‐yl}‐galacto‐tetritols 4–8 . Acetylation of the latter double headed acyclo C‐nucleosides with acetic anhydride in the presence of pyridine at ambient temperature resulted in N‐ and O‐acetylation to give the corresponding 1,2,3,4‐tetra‐O‐acetyl‐1,4‐bis{1,2,4‐triazino[5,6‐b]indol‐3‐yl}‐galacto‐tetritols 9–13 which were found to exist in centro‐symmetric zigzag conformations 20 . The assigned structures were corroborated by 1H, 13C NMR as well as mass spectra.  相似文献   

4.
A simple method of synthesis of a new, highly fluorescent amino acid derivative from the simple and generally available substrates 3‐nitro‐L ‐tyrosine and 1H‐indole‐3‐carbaldehyde is described. The obtained compound, N‐[(tert‐butoxy)carbonyl]‐3‐[2‐(1H‐indol‐3‐yl)benzoxazol‐5‐yl]‐L ‐alanine methyl ester ( 4 ), possesses a high fluorescence quantum yield. The described method illustrates a new possibility of synthesis of amino acid derivatives possessing desirable photophysical properties.  相似文献   

5.
The absolute configuration of strictosidinic acid, (2S,3R,4S)‐3‐ethenyl‐2‐(β‐d ‐glucopyranosyloxy)‐4‐{[(1S)‐2,3,4,9‐tetrahydro‐1H‐pyrido[3,4‐b]indol‐1‐yl]methyl}‐3,4‐dihydro‐2H‐pyran‐5‐carboxylate, was determined from its sodium chloride trihydrate, poly[[diaqua((2S,3R,4S)‐3‐ethenyl‐2‐(β‐d ‐glucopyranosyloxy)‐4‐{[(1S)‐2,3,4,9‐tetrahydro‐1H‐pyrido[3,4‐b]indol‐2‐ium‐1‐yl]methyl}‐3,4‐dihydro‐2H‐pyran‐5‐carboxylate)sodium] chloride monohydrate], {[Na(C26H32N2O9)(H2O)2]Cl·H2O}n. The strictosidinic acid molecule participates in intermolecular hydrogen bonds of the O—H...O and O—H...Cl types. The solid‐state conformation was observed as a zwitterion, based on a charged pyridine N atom and a carboxylate group, the latter mediating the packing through coordination with the sodium cation.  相似文献   

6.
The starting (1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbonohydrazonoyl dicyanide ( 2 ) was used as key intermediate for the synthesis of 3‐amino‐2‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylazo)‐[3‐substituted]‐1‐yl‐acrylonitrile derivatives ( 3 – 10 ). In addition, nitrile derivative 2 reacted with hydrazine hydrate or malononitrile to afford the corresponding 3,5‐diaminopyrazole 11 and enaminonitrile derivative 13 , respectively. On the other hand, compound 3 was subjected to react with malononitrile, acetic anhydride, triethylorthoformate, N,N‐dimethylformamide (DMF)‐dimethylacetal, thiourea, and hydroxylamine hydrchloride to afford antipyrine derivatives 16 – 21 . Moreover, the reaction of enaminonitrile 3 with carbon disulfide in pyridine afforded the pyrimidine derivative 22 , whereas, in NaOH/DMF followed by the addition of dimethyl sulphate afforded methyl carbonodithioate 24 . The reaction of enaminonitrile derivatives 3 – 5 with phenylisothiocyanate afforded the thiopyrimidine derivatives 25a – c . Finally, the enaminonitrile 4 reacted with 3‐(4‐chloro‐phenyl)‐1‐phenyl‐propenone to afford the pyridine derivative 27 . The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 13C‐NMR, 1H–NMR, and MS).  相似文献   

7.
A simple synthesis of a new, highly fluorescent amino acid and of its protected derivative useful in peptide studies is described. The obtained derivative, N‐[(tert‐butoxy)carbonyl]‐3‐(9,10‐dihydro‐9‐oxoacridin‐2‐yl)‐L ‐alanine ( 6 ), shows intense long‐wave absorption (above 360 nm) and emission (above 400 nm). The quantum yield of fluorescence of the investigated compound is very high, so it can serve as a sensitive analytical probe useful, e.g., in analysis of peptide conformations.  相似文献   

8.
Oxidative cyclization of the sugar hydrazones ( 3a‐f ) derived from {7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐ylsulfanyl}acetic acid hydrazide ( 1 ) and aldopentoses 2a‐c or aldohexoses 2d‐f with bromine in acetic acid in the presence of anhydrous sodium acetate, followed by acetylation with acetic anhydride gave the corresponding 2‐(per‐O‐acetyl‐alditol‐l‐yl)‐5‐methylthio{7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 5a‐f ). Condensative cyclization of the sugar hydrazones ( 3a‐f ) by heating with acetic anhydride gave the corresponding 3‐acetyl‐2‐(per‐O‐acetyl‐alditol‐1‐yl)‐2,3‐dihydro‐5‐methylthio{7‐acetyl‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 11a‐f ). De‐O‐acetylation of the acyclo C‐nucleoside peracetates ( 5 and 11 ) with methanolic ammonia afforded the hydrazono lactones ( 7 ) and the acyclo C‐nucleosides ( 12 ), respectively. The structures of new oxadiazole derivatives were confirmed by analytical and spectral data.  相似文献   

9.
7‐(6‐Azauracil‐5‐yl)‐isatin 1 was converted through its thiosemicarbazone 2 to 6‐(6‐azauracil‐5‐yl)‐2,3‐dihydro‐5H‐1,2,4‐triazino[5,6‐b]indol‐3‐thione 3 and through the thiosemicarbazone of appropriate isatinic acid to 2‐(2‐thio‐6‐azauracil‐5‐yl)‐6‐(6‐azauracil‐5‐yl)‐aniline 4. The course of the cyclocondensation of this compound was studied and the reaction was found to proceed in both possible ways, resulting in a mixture of compound 3 and regioisomer 6‐(2‐thio‐6‐azauracil‐5‐yl)‐2,3‐dihydro‐5H‐1,2,4‐triazino[5,6‐b]‐indol‐3‐one 5. Substituted aniline 4 was oxidized to 2,6‐bis‐(6‐azauracil‐5‐yl)‐aniline 7 , which served for the preparation of hydrazone 8 , cyclization of which led to 1‐[2,6‐bis‐(6‐azauracil‐5‐yl)‐phenyl]‐6‐azauracil‐5‐carbonitrile 9. This is the first tricyclic 6‐azauracil with vicinal arrangement of 6‐azauracil rings.  相似文献   

10.
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
3‐Hydroxyquinoline‐2,4‐diones 1 react with isocyanates to give novel 1,2,3,4‐tetrahydro‐2,4‐dioxoquinolin‐3‐yl (alkyl/aryl)carbamates 2 and/or 1,9b‐dihydro‐9b‐hydroxyoxazolo[5,4‐c]quinoline‐2,4(3aH,5H)‐diones 3 . Both of these compounds are converted, by boiling in cyclohexylbenzene solution in the presence of Ph3P or 4‐(dimethylamino)pyridine, to give 3‐(acyloxy)‐1,3‐dihydro‐2H‐indol‐2‐ones 8 . All compounds were characterized by IR, and 1H‐ and 13C‐NMR spectroscopy, as well as by EI mass spectrometry.  相似文献   

12.
The synthesis of a series of N‐glycosyl caboranylquinazolines is described. The condensation reaction of nitro‐acetylanthranilic acid with aminophenylcarborane gave 3‐[(o‐carboran‐1‐yl)phenyl]‐2‐methyl‐6‐nitroquinazolin‐4(3H)‐one 1 followed by reduction with Na2S to the corresponding 6‐amino‐3‐[(o‐carboran‐1‐yl)phenyl]‐2‐methylquinazolin‐4(3H)‐one 2 . Reaction of compound 2 with D‐glucose or D‐ribose in methanol in the presence of a catalytic amount of acetic acid affords boronated N‐glycosylaminoquinazolines namely: 2‐methyl‐3‐[4‐(o‐carboran‐1‐yl)phenyl]‐6‐[N‐β‐D‐glucopyranosyl)]aminoquinazolin‐4(3H)‐one 3 or 2‐methyl‐3‐[4‐(o‐carboran‐1‐yl)phenyl]‐6‐[N‐β‐D‐ribofuranosyl)]aminoquinazolin‐4(3H)‐one 4 , respectively. Degradation of the o‐caborane cage of compounds 3 and 4 yielded highly water‐soluble compounds of sodium 2‐methyl‐3‐[4‐( nido ‐undecarborate‐1‐yl)phenyl]‐6‐[N‐β‐D‐glucopyranosyl]aminoquinazolin‐4(3H)‐one 5 and sodium 2‐methyl‐3‐[4‐( nido ‐undecarborate‐1‐yl)phenyl]‐6‐[N‐β‐D‐ribofuranosyl)]aminoquinazolin‐4(3H)‐one 6 , respectively. The structures were established on the basis of elemental analysis, NMR, IR and mass spectrometry. The in vitro toxicity test using B16 melanoma cells showed that N‐glycosyl of nido ‐undecaboranylquinazolines ( 5 and 6 ), with higher water solubility, is not toxic at boron concentration of 3000 µg boron ml−1, whereas, N‐glycosyl of closo ‐carboranylquinazolines ( 3 and 4 ) has LD50 > 200 µg boron ml−1. The compounds described here may be considered as potential agents for BNCT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
In the article the study of cyclocondensation of 3‐[2‐amino‐3‐(3,5‐dioxo‐2,3,4,5‐tetrahydro[1,2,4]‐triazme‐6‐yl)phenyl]‐2,3‐dihydro‐quinoxalin‐2‐one 5 is described and it was found, that the reaction does not proceed by both possible directions, but only cyclization with the carbonyl group of 6‐azauracile cycle proceeds. The 6‐(3‐oxo‐3,4‐dihydro‐quinoxaline‐2‐yl)‐4H‐2,3‐dihydro[1,2,4]triazino[5,6‐b]indol‐3‐one 6 was formed in this way. This course of cyclocondensation was confirmed by the fact, that the product 6 , mentioned above, is quite different from isomeric compound 7 , prepared unambiguously by condensation of 7‐(6‐azauracile‐5‐yl)isatine 8 with o‐phenylenediamine.  相似文献   

14.
A tandem synthesis of 3‐acetylcoumarinoindoles 5a , 5b , 5c , 5d , 5e in the presence of catalytic amount of l ‐proline in ethanol medium is reported. l ‐proline has been utilized as an efficient and eco‐friendly catalyst for the Knoevenagel condensation of 3‐cyanoacetylindoles 1a , 1b , 1c , 1d , 1e with 2‐hydroxybenzaldehyde ( 2 ) to afford the corresponding substituted 3‐(1H‐indol‐3‐yl)2‐(2‐hydroxybenzylidene)‐3‐oxopropanenitriles 3(a–e) , which without isolation were treated with hot conc. HCl to afford 3‐acetylcoumarinoindoles 4a , 4b , 4c , 4d , 4e in high yields. Subsequently, these were reacted with dimethyl sulfate in the presence of PEG‐600 (Hyderabad, Andhra Pradesh, India) as an efficient and green solvent to afford the corresponding N‐methyl‐3‐acetylcoumarinoindoles 5a , 5b , 5c , 5d , 5e in moderate yields.  相似文献   

15.
The cyclocondensation reaction of compound 1 in boiling hydrochloric acid had an unexpected course. Instead of supposed 5,11‐dihydro‐quinoxalino[2,3‐b]quinoline 6a , 2‐(indol‐2‐yl)‐benzimidazole 4 was isolated as the major product.  相似文献   

16.
Cyclocondensation of 5‐amino‐6‐methyl‐2‐morpholinopyrimidine‐4‐thiol ( 1 ) and 2‐bromo‐5,5‐dimethylcyclohexane‐1,3‐dione ( 2 ) under mild reaction condition afforded 4,7,7‐trimethyl‐2‐morpholino‐7,8‐dihydro‐5H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐9(6H )‐one ( 3 ). The 1H and 13C NMR data of compound ( 3 ) are demonstrated that this compound exists primarily in the enamino ketone form. Reaction of compound ( 3 ) with phosphorous oxychloride gave 4‐(9‐chloro‐4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 4 ). Nucleophilic substitution of chlorine atom of compound ( 4 ) with typical secondary amines in DMF and K2CO3 furnished the new substituted derivatives of 4‐(4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h ). All the synthesized products were characterized and confirmed by their spectroscopic and microanalytical data.  相似文献   

17.
The 3‐amino‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐one 6 and N‐(1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxalin‐3‐yl)carbamates 17a,b were synthesized from the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxa‐line‐3‐carboxylate 1b via the 1,5‐dihydro‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐3‐carbohydrazide 13b and then 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carboxazide 8 . Heating of compound 13b and arylalde‐hydes afforded the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carbo(2‐arylmethylene)hydrazides 14a‐d.  相似文献   

18.
Condensation of 4‐aminoantipyrine with ethyl acetoacetate, ethyl benzoylacetate, and ethyl cyanoacetate furnished the corresponding ethyl 3‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)aminoacrylate and 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide derivatives. The aminoacrylates derivatives react with acetonitrile and sodium hydride to give 2‐amino‐6‐methyl‐1‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)‐4‐pyridone. Reaction of the cyanoacetamide derivative with dimethylformamide‐dimethylacetal (DMF‐DMA) afforded 2‐cyano‐N‐[1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐pyrazol‐4‐yl]‐2‐(N,N‐dimethylamino)methylene acetamide in high yield. Treatment of the latter with 5‐aminopyrazole derivatives afforded the corresponding pyrazolo[2,3‐a]pyrimidines. 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide also reacts with heterocyclic diazonium salts to give the corresponding pyrazolo[5,1‐c]‐1,2,4‐triazine derivatives. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:508–514, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20046  相似文献   

19.
Under both conventional and microwave methods, 2‐amino‐4H‐pyran‐3‐carbonitrile derivative 1 was synthesized and reacted with different reagents. Thus, 2‐amino‐4H‐pyran‐3‐carbonitrile derivative was treated with chloroacetyl chloride, phenyl isocyanate, cyanoacetic acid, benzoyl chloride, triethyl orthoformate, acetic anhydride/H2SO4, arylidene malononitrile, urea, and/or p‐aminosulphaguanidine producing chloroacetamide, 3‐phenylurea, cyanoacetamide, N‐benzoylpyran, ethylformimidate, pyranopyrimidin‐4‐one, pyranopyridine, pyranopyrimidin‐2‐one, and pyranopyrimidin‐2‐imine derivatives, respectively. Meanwhile, compound 1 was reacted with ethyl bromoacetate, phenacyl bromide, phthalic anhydride, different aromatic amines, and/or acetic acid/H2SO4 to produce 5‐aminopyrano[2,3‐b]pyrrole‐6‐carboxylate, dihydropyrano[2,3‐b]pyrrole‐6‐yl‐(phenyl)methanone, 1,3‐dioxoisoindolinyl pyran, 1,4‐dihydropyridine, and 2‐hydroxy‐1,4‐dihydropyridine derivatives, respectively. On the other hand, when compound 1 was allowed to react with maleic anhydride and/or hydrazine hydrate, pyran‐4‐oxobut‐2‐enoic acid and 3‐aminopyranopyrazole derivatives were obtained, respectively. Reaction of pyran‐4‐oxobut‐2‐enoic acid with malononitrile under different conditions gave 2‐(furan‐2‐yl)‐4H‐pyran and 2‐(4H‐pyran‐2‐yl)‐1H‐pyrrole derivatives, while condensation of 3‐aminopyranopyrazole with benzaldehyde gave 1,4‐dihydropyrano[2,3‐c]pyrazol‐3‐yl‐1‐phenylmethanimine derivative. The newly synthesized compounds were characterized by the spectroscopic tools IR, 1H‐NMR, 13C‐NMR, MS, and elemental analysis. Some of these compounds have been screened in vitro for antimicrobial activity against different strains of bacteria and fungi and also were tested against two cancer cell lines: mammary gland breast cancer (MCF‐7) and colon cancer (HCT‐118).  相似文献   

20.
5,6‐Diaminopyrimidin‐2,4‐diol 1 was reacted with 1,4‐d ‐gluconolactone 2 , 6‐chloro‐4‐cyclopropyl‐7‐floro‐1,4‐dihydro‐1‐oxonaphthalen‐2‐carboxilic acid 4 , (3S)‐9,10‐difloro‐3,7‐dihydro‐3‐methyl‐7‐oxo‐2H‐[1,4]oxazino[2,3,4‐ij]quinolin‐6‐carboxylic acid 6 , and dimethylacetylendicarboxylate to afford 1‐(2,6‐dihydroxy‐9H‐purin‐8‐yl)‐sorbitol 3 , 7‐chloro‐1‐cyclopropyl‐6‐flouro‐3‐(2,6‐dihydroxy‐9H‐purin‐8‐yl)quinoline‐4(1H)‐one 5 , 9,10‐difluoro‐2,3‐dihydro‐6‐(2,6‐dihydroxy‐9H‐purin‐8‐yl)‐3‐methyl‐[1,4]oxazine[2,3,4‐ij]quinoline‐7‐one 7 , and (2,4‐dihydroxy‐6‐oxo‐5,8‐dihydro‐6H‐pteridine‐7‐yiliden)‐acetic acid methyl ester 9 , respectively. The synthesized compounds characterized by IR, 1H‐NMR, 13C‐NMR, GC‐mass, and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号