共查询到18条相似文献,搜索用时 78 毫秒
1.
杯[4]芳烃的上端和下端通过金属复分解闭环反应以较高产率合成一系列新型杯[4]冠醚衍生物(8a-c),目标产物结构经元素分析、IR、MS、1H NMR及13C NMR证实。 相似文献
2.
综述了过渡金属均相催化的炔烃复分解反应进展,主要分为两部分:一是炔烃复分解反应在炔烃合成中的应用,即从六、七十年代Mortreux催化剂的发现能均相催化炔烃的歧化反应,经过一系列的条件改造,合成了炔醚和二芳基乙炔等化合物,并提出了可能的两种机理:金属卡宾和金属卡拜机理;金属钼和钨的卡拜络合物相继合成,发现此类络合物能够催化官能化的二炔的复分解反应,合成一系列的大环化合物。二是炔烃复分解反应在合成高聚物中的应用,即钙和钨的卡拜络合物被用来催化ROMP和ADIMET反应合成高聚物,改良了的Mortreux催化剂也能催化高聚物的生成,这些高聚物在发光器件、有机\"塑料\"激光、液晶显示器上都有应用。 相似文献
3.
4.
6.
7.
有机合成中的C=C键形成新方法: 原子经济的金属复 分解闭环反应 总被引:1,自引:0,他引:1
综述了金属复分解闭环反应最新进展。金属复分解闭环反应已成为有机合成中的非常重要的方法,广泛应用于碳环、杂环化合物及天然产物的合成。原子经济的、绿色化学的优点展示出更加诱人的前景。 相似文献
8.
9.
过渡金属催化交叉偶联反应及其在液晶合成中的应用 总被引:4,自引:0,他引:4
过渡金属催化交叉偶联反应及其在液晶合成中的应用杜卫红安忠维徐茂梁(西安近代化学研究所西安710061)关键词过渡金属催化交叉偶联反应合成液晶液晶是一类具有特殊物理性能的有机化合物,其分子结构要求长径比大于4,官能团包括芳(杂)环、脂环、烷基、双键、叁... 相似文献
10.
11.
In tandem ring-closing metathesis of alkynyl silaketals containing two different tethered olefins, the gem-dimethyl group showed the expected Thorpe-Ingold effect, thereby giving good level of group selectivity. Unexpectedly, however, the corresponding gem-diphenyl group did not show any Thorpe-Ingold effect for the ring-closure reaction. 相似文献
12.
13.
Chelating Ruthenium Phenolate Complexes: Synthesis,General Catalytic Activity,and Applications in Olefin Metathesis Polymerization
下载免费PDF全文

Anna Kozłowska Dr. Maciej Dranka Prof. Janusz Zachara Eva Pump Prof. Dr. Christian Slugovc Krzysztof Skowerski Prof. Dr. Karol Grela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(43):14120-14125
Cyclic Ru‐phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring‐closing metathesis (RCM), enyne and cross‐metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring‐opening metathesis polymeriyation (ROMP) of this monomer. 相似文献
14.
Noy B. Nechmad Ravindra Phatake Elisa Ivry Albert Poater N. Gabriel Lemcoff 《Angewandte Chemie (International ed. in English)》2020,59(9):3539-3543
The development of selective olefin metathesis catalysts is crucial to achieving new synthetic pathways. Herein, we show that cis‐diiodo/sulfur‐chelated ruthenium benzylidenes do not react with strained cycloalkenes and internal olefins, but can effectively catalyze metathesis reactions of terminal dienes. Surprisingly, internal olefins may partake in olefin metathesis reactions once the ruthenium methylidene intermediate has been generated. This unexpected behavior allows the facile formation of strained cis‐cyclooctene by the RCM reaction of 1,9‐undecadiene. Moreover, cis‐1,4‐polybutadiene may be transformed into small cyclic molecules, including its smallest precursor, 1,5‐cyclooctadiene, by the use of this novel sequence. Norbornenes, including the reactive dicyclopentadiene (DCPD), remain unscathed even in the presence of terminal olefin substrates as they are too bulky to approach the diiodo ruthenium methylidene. The experimental results are accompanied by thorough DFT calculations. 相似文献
15.
Hajime IwamotoKoji Itoh Hiroyuki NagamiyaYoshimasa Fukazawa 《Tetrahedron letters》2003,44(31):5773-5776
[3]Catenane 5a and 5b were synthesized conveniently by olefin metathesis dimerization of pseudorotaxanes 3a and 3b. The yields of 5a and 5b were influenced by concentrations of 3a and 3b, and a ring size of a center wheel of [3]catenane. 相似文献
16.
Dr. Kuppuswamy Arumugam C. Daniel Varnado Jr. Dr. Stephen Sproules Dr. Vincent M. Lynch Prof. Dr. Christopher W. Bielawski 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(33):10866-10875
High yielding syntheses of 1‐(ferrocenylmethyl)‐3‐mesitylimidazolium iodide ( 1 ) and 1‐(ferrocenylmethyl)‐3‐mesitylimidazol‐2‐ylidene ( 2 ) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis‐1,5‐cyclooctadiene) or [Ru(PCy3)Cl2(?CH‐o‐O‐iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir( 2 )(cod)Cl]) and 5 ([Ru( 2 )Cl2(?CH‐o‐O‐iPrC6H4)]), respectively. Complex 4 ([Ir( 2 )(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron‐donating ability of the N‐heterocyclic carbene ligand (ΔTEP=9 cm?1; TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η5‐C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [ 5 ][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95 % yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [ 5 ][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [ 5 ][BF4] were found to catalyze the ring‐closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo‐first‐order rate constants (kobs) of 3.1×10?4 and 1.2×10?5 s?1, respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second‐generation N‐heterocyclic carbene that featured a 1′,2′,3′,4′,5′‐ pentamethylferrocenyl moiety ( 10 ) was also prepared and metal complexes containing this ligand were found to undergo iron‐centered oxidations at lower potentials than analogous complexes supported by 2 (0.30–0.36 V vs. 0.56–0.62 V, respectively). Redox switching experiments using [Ru( 10 )Cl2(?CH‐o‐O‐iPrC6H4)] revealed that greater than 94 % of the initial catalytic activity was restored after an oxidation–reduction cycle. 相似文献
17.
Grzegorz K. Zieliński Prof. Dr. Karol Grela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(28):9440-9454
Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non‐metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term “tandem process” is sometimes used improperly to describe other types of multi‐reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. 相似文献