首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 421 毫秒

1.  La-Ni-Mo-B非晶态催化剂的制备、加氢脱氧性能及失活研究  被引次数:1
   王威燕  杨运泉  罗和安  王锋  胡韬  刘文英《燃料化学学报》,2011年第39卷第5期
   以NaBH4为还原剂采用化学还原法制备La-Ni-Mo-B非晶态催化剂,用BET、SEM、XRD和XPS等手段对催化剂进行表征,以4-甲基苯酚为探针研究其加氢脱氧性能,并探讨了4-甲基苯酚的加氢脱氧反应路径。结果表明,助剂La的加入,减小了催化剂的粒径,增大了比表面积,促进Ni2+和Mo6+的还原。275℃时,4-甲基苯酚加氢脱氧转化率达97%,甲基环己烷选择性达96%,加氢脱氧反应按氢化-氢解路径进行,产物中芳烃含量明显低于世界燃油规范Ⅲ类油标准(芳烃的质量分数小于15%)。催化剂活性降低的主要原因是由于Ni活性中心的非晶态结构被破坏。    

2.  Ni-Co-W-B非晶态催化剂的制备及其加氢脱氧性能  
   王威燕  杨运泉  罗和安  彭会左  张小哲  胡韬《催化学报》,2011年第10期
   采用化学还原法制备了不同Ni/Co原子比的Ni-Co-W-B非晶态催化剂,以苯酚为探针,研究了其加氢脱氧性能.结果表明,新鲜的Ni-Co-W-B催化剂具有非晶态结构,其中Ni0和B0之间存在电子转移,且随着Co含量的增加,催化剂的热稳定性逐渐提高,表面Ni0含量减少.该催化剂上苯酚加氢脱氧反应按照先加氢再脱氧的方式进行,没有生成苯.当原料中Ni:Co原子比为2:1时,Ni-Co-W-B非晶态催化剂表现出最高的加氢脱氧催化活性,在275oC,氢气压力4.0MPa条件下反应2h,苯酚转化率达99.4%,脱氧率可达86.0%.催化剂的加氢脱氧活性取决于其表面Ni0含量、Bransted酸性和比表面积.    

3.  Preparation and catalytic properties of Ni(Co)-W-B amorphous catalysts for 4-cresol hydrodeoxygenation  
   HU Tao    YANG Yun-quan    WANG Wei-yan    LIU Wen-ying    HE Heng    GAO Bo《燃料化学学报》,2012年第40卷第1期
   采用化学还原法制备出非晶态催化剂Ni-W-B和Co-W-B,用BET、XRD和XPS对催化剂进行表征分析,以对甲基苯酚为模型化合物研究了两种催化剂的加氢脱氧性能.结果表明,所制备的两种催化剂均为非晶态结构,两种催化剂在对甲基苯酚的加氢脱氧反应中都显示出较好的脱氧活性.在相对低温523 K下,Ni -W-B催化剂显示较高的加氢活性,转化率达到100.0%,对甲基环己醇的选择性为55.1%,脱氧选择性只有44.1%,而Co-W-B催化剂显示出较高的脱氧活性,脱氧选择性达到93.1%,这主要是由于催化剂的表面不同价态元素组成含量引起的.在573 K和4.0 MPa下,催化对甲基苯酚的加氢脱氧反应的转化率和脱氧选择性都能达到100%.    

4.  Ni(Co)-W-B非晶态催化剂的制备和加氢脱氧性能研究  被引次数:1
   胡韬  杨运泉  王威燕  刘文英  贺恒  高波《燃料化学学报》,2012年第40卷第1期
   采用化学还原法制备出非晶态催化剂Ni-W-B和Co-W-B,用BET、XRD和XPS对催化剂进行表征分析,以对甲基苯酚为模型化合物研究了两种催化剂的加氢脱氧性能。结果表明,所制备的两种催化剂均为非晶态结构,两种催化剂在对甲基苯酚的加氢脱氧反应中都显示出较好的脱氧活性。在相对低温523 K下,Ni-W-B催化剂显示较高的加氢活性,转化率达到100.0%,对甲基环己醇的选择性为55.1%,脱氧选择性只有44.1%,而Co-W-B催化剂显示出较高的脱氧活性,脱氧选择性达到93.1%,这主要是由于催化剂的表面不同价态元素组成含量引起的。在573 K和4.0 MPa下,催化对甲基苯酚的加氢脱氧反应的转化率和脱氧选择性都能达到100%。    

5.  Mo含量对Ni-Mo-B非晶态合金催化剂结构及催化二硝基甲苯加氢性能的影响  
   闫少伟  范辉  梁川  李忠《高等学校化学学报》,2012年第33卷第9期
   采用化学还原法制备Ni-Mo-B非晶态合金催化剂, 研究了Mo含量对二硝基甲苯加氢制备甲苯二胺催化性能的影响. 结果表明, 当Mo含量(摩尔分数)≤6%时, Mo助剂使Ni-B非晶态合金催化剂的催化活性显著提高, 选择性均达到100%. 通过XRD, TEM, DSC, XPS, ICP和H2-TPD技术对催化剂微观结构进行了表征, 结果表明, 随着Mo助剂含量的增加, Ni-Mo-B非晶态合金催化剂中不仅非晶态结构的无序程度增大, 催化剂粒径逐渐由60 nm左右减小至15 nm左右, 而且分布更加均匀, Ni吸附中心的H2吸附强度变弱, 使氢物种更易于在催化剂表面流动并参与反应, 同时Mo助剂还显著提高了催化剂的热稳定性和抗氧化性. 当Mo含量为6%时, Ni-Mo-B非晶态合金催化剂的催化性能最好, 在2 MPa和110℃反应条件下, 二硝基甲苯转化率达99.8%, 甲苯二胺选择性为100%.    

6.  助剂Mo对Ni基催化剂加氢脱氧催化作用机理的影响  
   吕恩静《分子催化》,2012年第26卷第4期
   制备了一系列Ni-Mo/γ-Al2O3催化剂,并采用X射线衍射、乙酸程序升温表面反应、NO-红外漫反射光谱、乙酸(或乙醇)-红外漫反射光谱等表征手段系统研究了助剂Mo的加入对Ni基催化剂的物化性质、乙酸加氢脱氧(HDO)产物、HDO活性位及乙酸(或乙醇)吸附形态的影响.结果表明,Mo的加入可提高活性组分NiO的分散度,且能抑制乙酸C-C键的断裂;Mo的加入可提供氧空穴,以促进乙酸C-O键及中间产物乙醇C-O键的断裂,显著提高了Ni基催化剂的HDO活性和产物C2H6的选择性.表明Mo的加入改变了Ni催化剂HDO的催化作用机理.    

7.  超声波辅助制备非晶态Ni-Mo-B催化剂及其加氢脱氧性能研究  被引次数:3
   王威燕  杨运泉  罗和安  包建国  陈卓《燃料化学学报》,2009年第37卷第6期
   用普通方法和超声波法制备了非晶态Ni-Mo-B催化剂,用BET、SEM、XRD、XPS和FT-IR等手段对催化剂进行表征。以苯酚为探针考察了催化剂的制备因素和反应温度对催化剂加氢脱氧性能的影响,探讨了苯酚在非晶态Ni-Mo-B催化剂表面上的吸附加氢脱氧反应机理。结果表明,超声波条件下制备的催化剂粒径小,颗粒团聚减弱,比表面积大,MoO2与B的含量高,催化剂活性高。在498K时,苯酚的转化率达81.08%,脱氧选择性达93.39%。    

8.  焙烧温度对非负载Ni-Mo-Al2O3催化剂加氢脱氧性能的影响  被引次数:1
   王欣  张舜光  侯凯湖《燃料化学学报》,2010年第38卷第5期
   采用热分解硝酸镍和钼酸铵的方法制备了Ni-Mo-Al2O3非负载催化剂。分别以乙酸、苯酚为探针分子,在连续流动固定床反应器上评价了催化剂的加氢脱氧活性,并采用XRD、BET、XRD、EDS等技术对催化剂进行了表征,着重考察了焙烧温度对催化剂的晶态结构、表面元素相对含量及催化性能的影响。结果表明,随着焙烧温度的升高,催化剂的比表面积增大,晶化程度提高,焙烧温度550℃时,催化剂表面Ni、Mo、Al的比例达到最优,并具有最好的加氢脱氧活性。在250℃、0.4MPa条件下,乙酸的脱氧率达到96.0%;在200℃、0.3MPa条件下,苯酚的脱氧率达到96.8%。    

9.  二硝基甲苯低压加氢Ni-La-B非晶态合金催化剂的制备及结构表征  被引次数:1
   闫少伟  范辉  梁川  李忠  于智慧《催化学报》,2012年第33卷第8期
   用化学还原法制备了Ni-La-B非晶态合金催化剂,并采用X射线衍射、透射电镜、差热分析、X射线光电子能谱、电感耦合等离子光谱和H2程序升温脱附技术对催化剂进行了表征,研究了La含量对催化剂微观结构及其催化二硝基甲苯(DNT)加氢制二氨基甲苯(DAT)性能的影响.结果表明,随着助剂La含量的增加,Ni-La-B催化剂中非晶态结构的长程无序程度增大,催化剂平均粒径逐渐由70nm左右减小至10nm左右,分布更加均匀;同时降低了Ni吸附H2的强度,使H2吸附物种更易于在催化剂表面流动并参与反应.另外,La助剂还显著提高了催化剂的热稳定性和抗氧化性.在二硝基甲苯加氢反应中,催化剂性能随着La加入量提高至6%(摩尔分数)时,1MPa低压条件下DNT转化率和DAT选择性均达100%.当La加入量为8%时,催化剂的Ni活性中心数明显减少,其活性下降.    

10.  Ni-Co-P非晶态合金催化香草醛HDO性能的研究  
   程庆彦  刘栋杰  王明明  王延吉《燃料化学学报》,2019年第47卷第10期
   采用化学还原法合成Ni-P非晶态合金,添加Co元素对非晶态合金进行改性,采用XRD、SEM、XPS、DSC等方法对非晶态合金进行结构与性能的表征。以香草醛加氢脱氧制2-甲氧基-4-甲基苯酚(MMP)为探针考察催化剂的加氢脱氧(HDO)性能。结果表明,Ni与Co之间的协同作用不仅有助于Ni的还原,增加催化剂活性中心数目,而且提高了非晶态合金分散度、无序度和热稳定性。在优化的反应条件下:nCo/(nCo+nNi)(物质的量比)=0.08、H2分压为2.0 MPa、反应温度为150 ℃、反应时间为180 min、催化剂用量为0.05 g,香草醛的转化率达到100%,MMP选择性为82.7%。催化剂循环五次后,香草醛的转化率保持100%,MMP的选择性下降到68.7%。    

11.  Pt对负载型Ni-B非晶态合金苯加氢活性及稳定性的影响  
   李锋  武显春  唐龙  宋华《燃料化学学报》,2011年第39卷第7期
   以拟薄水铝石、丝光沸石为原料制备载体AM,采用浸渍-化学还原法制备了不同Pt含量的Ni-Pt-B/AM非晶态合金催化剂,并运用XRD、ESEM、BET、ICP、XPS和H2-TPR等手段对催化剂进行表征。以苯加氢制环己烷反应为探针,考察了微量Pt对Ni-B/AM非晶态合金催化剂加氢活性及稳定性的影响。结果表明,Ni-B/AM催化剂中添加微量Pt会使Ni-B颗粒细化,并促进NiO的还原,显著提高催化剂的加氢活性。与Ni-B/AM催化剂相比,在反应温度110℃、Ni/Pt摩尔比为150∶1.0时,Ni-Pt-B/AM催化剂苯加氢活性提高了82.4%。添加Pt的Ni-Pt-B/AM催化剂具有更高的抗硫性及热稳定性。    

12.  微波辅助Ni-B/SiO2非晶态催化剂的制备及其在硝基苯加氢中催化性能的研究  被引次数:6
   赵卿飞  王明辉  李辉  李和兴《分子催化》,2006年第20卷第3期
   采用微波辐射干燥浸渍法获得的Ni2 /SiO2,再由液相KBH4还原制备Ni-B/SiO2非晶态催化剂,在液相硝基苯加氢反应中,该催化剂对苯胺的选择性为100%,催化活性显著高于由传统加热法制备的Ni-B/SiO2.根据XRD、XPS、SEM和氢吸附等表征,两种催化剂具有相似的活性中心本质,催化性能的不同主要归因于分散度的区别.与传统加热法相比,微波加热具有受热均匀以及增强Ni2 与载体SiO2相互结合力的特点,导致Ni-B/SiO2(MW)分散度增加,并能减少催化反应过程中活性相的脱落流失,延长催化剂使用寿命.    

13.  Ni-B和Ni-Ce-B超细非晶态合金的退火晶化及其催化性能  被引次数:2
   王晓光  张新夷  李忠瑞  钟文杰  贺博  韦世强《催化学报》,2001年第22卷第4期
    采用XAFS,XRD和DTA方法研究了Ni-B和Ni-Ce-B超细非晶态合金在退火过程中的结构变化及其结构与催化性能的关系.活性结果表明,在退火温度为623K时,Ni-B和Ni-Ce-B样品的苯加氢催化反应转化率最高,分别为63%和81%,0.3%Ce的掺入提高了Ni-Ce-B的催化活性.DTA结果表明,Ni-B超细非晶态合金在598和653K有两个晶化峰,而Ni-Ce-B样品有548,603,696和801K四个晶化峰.XAFS和XRD结果进一步说明,在573K退火时,Ni-B样品晶化生成晶态Ni3B和纳米晶Ni,此时Ni-Ce-B仅有少量晶态Ni3B生成.在673K退火时,Ni-B样品中的Ni3B开始分解生成晶态Ni,同时纳米晶Ni聚集并形成大颗粒晶态Ni,而Ni-Ce-B样品晶化生成晶态Ni3B和纳米晶Ni.在773K和更高的温度退火处理后,Ni-B样品中Ni的局域环境结构与金属Ni箔基本一致,但Ni-Ce-B样品晶化生成的Ni晶格有较大畸变,同时Ni3B并未分解.说明0.3%的Ce对提高Ni-Ce-B样品的稳定性有显著作用.本文首次报道了Ni-B和Ni-Ce-B超细非晶态合金中苯加氢催化活性中心为纳米晶Ni和类似于金属Ni的Ni-B非晶态合金.    

14.  非负载镍催化剂的2-乙基蒽醌加氢活性及其氢吸脱附性质  被引次数:4
   侯永江  王亚权  韩森  米镇涛  吴巍  闵恩泽《催化学报》,2004年第25卷第2期
    分别制备了金属镍粉、兰尼镍、Ni-B非晶态合金及镧掺杂的Ni-B非晶态合金(Ni-B-La)催化剂,研究了催化剂的氢吸附和脱附性质以及对2-乙基蒽醌加氢反应的催化性能. 结果表明,金属镍粉、兰尼镍和Ni-B催化剂表面均具有两种氢吸附位: 弱吸附位和强吸附位. Ni-B-La催化剂表面只有氢的强吸附位,其强吸附氢量与兰尼镍相当. 推测只有氢的强吸附位是2-乙基蒽醌加氢反应的活性中心,并且Ni-B-La催化剂上的强吸附氢较兰尼镍上的更活泼,因而Ni-B-La非晶态合金催化剂对加氢反应的催化活性高于兰尼镍.    

15.  Ni-B/SiO2非晶态催化剂应用于硝基苯液相加氢制苯胺  被引次数:25
   王明辉  李和兴《催化学报》,2001年第22卷第3期
    考察了Ni-B/SiO2非晶态催化剂在高压液相硝基苯加氢制苯胺反应中的催化活性和选择性.研究表明,该催化剂不仅具有很高的催化活性,而且对苯胺的选择性较高,优于RaneyNi以及其它Ni基催化剂.晶化导致催化剂失活.载体的存在不仅能提高催化剂的分散度,而且能对非晶态结构起稳定化作用;将催化剂保存在乙醇中可保持其活性不变.结合催化剂的表征,讨论了Ni-B/SiO2非晶态催化剂的催化性能与其结构的关系.    

16.  溶剂化金属原子浸渍法制备高分散负载型催化剂 Ⅺ.La—Ni催化剂的表征及催化加氢活性  
   吴世华  黄唯平  赵维君  王香艳  张书笈  王序昆《中国稀土学报》,1991年第3期
   应用溶剂化金属原子浸渍(SMAI)技术制备了非负载和SiO_2负载的La-Ni双金属催化剂。XRD和磁测定结果表明催化剂中La-Ni已形成合金。合金颗粒分散度很高,平均直径小于4.0nm。XPS结果表明Ni主要以零价态存在,La以金属La和La_2O_3形式存在。在二丙酮醇和糠醛加氢反应中,La-Ni催化剂的活性大于纯Ni催化剂,La起了助催化剂的作用。而在丙酮加氢反应中La-Ni催化剂的活性却小于纯Ni催化剂。    

17.  La修饰的Co-B非晶态催化剂用于乳酸乙酯选择性加氢制1,2-丙二醇  被引次数:2
   沈美玉  王晓月  孙德  赵凤伟  杜长海《分子催化》,2016年第30卷第1期
   用化学还原法制备了La修饰的Co-B非晶态合金催化剂(Co-La-B),并考察了其在乳酸乙酯液相加氢制1,2-丙二醇(1,2-PDO)反应中的催化性能.通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、比表面积测定(BET)、差示扫描量热(DSC)、电感耦合等离子发射光谱(ICP-OES)、X射线光电子能谱(XPS)、氢气化学吸附、氢气程序升温脱附(H2-TPD)等手段对催化剂进行表征,研究了稀土助剂La对Co-B催化剂催化性能的影响.结果表明,活性组分Co以元素态和氧化态两种形式存在于Co-La-B非晶态合金催化剂中,催化剂中存在B向Co的电子转移,富电子的Co用于活化氢,氧化态形式存在的La3+促进了B向Co的电子转移;适量的La能提高催化剂的热稳定性,显著减小催化剂粒径,使催化剂形成更加单一的Co吸附活性位,有利于吸附活化的氢促进加氢反应进行.在氢气压力6 MPa,反应温度433 K,反应时间9h的条件下,0.5% Co-La-B催化剂表现出最优的催化加氢性能,乳酸乙酯的转化率达到99.7%,1,2-丙二醇的选择性达到98.5%.    

18.  载体对负载型Ni-B催化剂催化2-乙基蒽醌加氢制H2O2反应性能的影响  
   陈雪莹  乔明华  贺鹤勇《催化学报》,2011年第32卷第2期
   采用还原剂浸渍法将Ni-B非晶态合金负载到SiO2,γ-Al2O3和活性炭(AC)上,以2-乙基蒽醌选择加氢制H2O2为探针反应,系统研究了载体对Ni-B非晶态合金催化剂结构、热稳定性和催化性能的影响.结果表明,将Ni-B负载到载体上后,其晶化温度显著提高,各催化剂热稳定性依次为Ni-B/AC>Ni-B/SiO2>Ni-B/γ-Al2O3;催化剂活性依次为Ni-B/SiO2>Ni-B/γ-Al2O3>Ni-B/AC;羰基加氢选择性依次为Ni-B/AC>Ni-B/SiO2>Ni-B/γ-Al2O3.各催化剂加氢活性差异主要归因于其活性比表面积和载体孔结构的不同;羰基加氢选择性差异主要由催化剂上活性位的均一程度和载体表面性质的不同所致.    

19.  NiB和NiP超细非晶合金的退火晶化行为及催化性能  被引次数:9
   韦世强  王晓光  殷士龙  陈昌荣  刘文汉  张新夷《催化学报》,2001年第22卷第2期
    采用X射线吸收精细结构(XAFS),X射线衍射(XRD)和差热分析(DTA)等方法研究了以化学还原法制备的NiB和NiP超细非晶态合金催化剂在退火过程中的结构变化.XRD结果表明,在300℃下退火时,NiB超细非晶态合金晶化生成纳米晶Ni3B亚稳物相,NiP超细非晶态合金则主要晶化生成金属Ni和部分晶态Ni3P的混合物相;在500℃退火且近于完全晶化的条件下,大部分超细非晶态合金都晶化为金属Ni.XAFS结果定量地说明,对于NiB和NiP初始样品,第一近邻Ni-Ni配位的平均键长Rj分别为0.274和0.271nm,其结构无序度σS很大,分别为0.033和0.028nm,其热无序度σT分别为0.0069和0.0060nm.300℃退火后,晶化生成的Ni3B的Ni-Ni配位的σS降低到初始样品的33%,仅为0.011nm.500℃退火后,NiB样品的结构参数与金属Ni基本一致,但NiP样品的Ni-Ni配位的σS还远大于σT,仍为0.0125nm,表明NiB和NiP超细非晶态合金的退火晶化行为有很大的差别.纳米晶Ni3B催化苯加氢反应的转化率比超细Ni-B非晶态合金或多晶金属Ni更高,表明纳米晶Ni3B中的Ni与B原子组成了苯加氢催化反应的活性中心.    

20.  Ni-Co-B非晶态合金催化肉桂醛常压加氢制3-苯丙醛的研究  
   李辉  马春景  李和兴《化学学报》,2006年第64卷第19期
   采用化学还原法制备了一系列Ni-Co-B非晶态合金催化剂, 通过调变金属盐混和液中Ni2+/Co2+的比例, 可制得不同Co含量的Ni-Co-B非晶态合金. 用ICP, BET, XRD, TEM, SAED, DSC, XPS和H2-TPD对其组成、结构、粒子大小、表面形貌和表面电子态进行了系列表征, 并以肉桂醛常压加氢制苯丙醛作为探针反应, 考察了所制备的Ni-Co-B非晶态合金的催化性能. 结果表明, Ni-Co-B非晶态合金中Ni为活性中心, Co的引入可显著增加其催化活性. 由于催化测试中金属总量固定为1.0 g, 因此增加Ni-Co-B中Co的含量具有正负两方面的效应. 一方面, 由于Ni活性位数目的减少加氢活性降低; 另一方面, Co对Ni活性中心具有协同作用, 有利于增加合金的无序度、金属-类金属间相互作用、表面Ni含量和电子相互作用, 从而提高催化活性. 最佳Co与(Ni+Co)摩尔比含量的范围为0.2~0.5.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号