首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Layer‐by‐layer assemblies consisting of alternating layers of nitrilotris(methylene)triphosphonic acid (NTMP), a polyfunctional corrosion inhibitor, and zirconium(IV) were prepared on alumina. In particular, a nine‐layer (NTMP/Zr(IV))4NTMP stack could be constructed at room temperature, which showed a steady increase in film thickness throughout its growth by spectroscopic ellipsometry up to a final thickness of 1.79 ± 0.04 nm. At higher temperature (70 °C), even a two‐layer NTMP/Zr(IV) assembly could not be prepared because of etching of the alumina substrate by the heated Zr(IV) solution. XPS characterization of the layer‐by‐layer assembly showed a saw tooth pattern in the nitrogen, phosphorus, and zirconium signals, where the modest increases and decreases in these signals corresponded to the expected deposition and perhaps removal of NTMP and Zr(IV). Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed the attachment of the NTMP molecule to the surface through PO?, PO2?, PO3?, and CN? signals. Increasing attenuation of the Al signal from the substrate after deposition of each layer was observed by both XPS and ToF‐SIMS. Essentially complete etching of the alumina by the heated Zr(IV) solution was confirmed by spectroscopic ellipsometry, XPS, and ToF‐SIMS. Atomic force microscopy revealed that all the films were smooth with Rq roughness values less than 0.5 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Microfabricated silica thin layer chromatography (TLC) plates have previously been prepared on patterned carbon nanotube forests. The high temperatures used in their fabrication reduce the number of hydroxyl groups on their surfaces. Fortunately, silica can be rehydroxylated. In diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), a silanol peak below 3740 cm?1 indicates a well‐hydroxylated silica surface that is fit for chromatography. Hydroxylations of our materials with HF are so effective that it is not possible to discern the position of this peak. In contrast, this signal is discernable when the plates are treated with NH4OH. To find a more convenient method for studying the surfaces of TLC plates, time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS) was considered. ToF‐SIMS is advantageous because multiple microfabricated TLC plates must be scraped to obtain enough silica for one DRIFT analysis, while static SIMS can be performed on very small regions (500 × 500 µm2 or less) of individual plates. Ratios of the SiOH+ and Si+ ToF‐SIMS signals for microfabricated TLC plates correlated well with ~3740 cm?1 silanol peaks from DRIFT. Thus, SIMS allows direct analysis of all of our treated and untreated plates, including those hydroxylated with HF. The best hydroxylation condition for HF, which was better than any studied for NH4OH, was around 150 ppm at room temperature. The best hydroxylation condition for NH4OH was 50 °C for 72 h. ToF‐SIMS versus DRIFT results of commercial TLC plates were also obtained and evaluated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The surface composition of amorphous Finemet, Fe73Si15.8B7.2Cu1Nb3, was studied by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The as‐received sample in the original state and after Ar+ sputter‐cleaning was analyzed at room temperature as well as after cooling to ? 155 °C. In the cooled state, the surface oxide layer composed of oxides of the alloy constituents was found to become enriched with elemental iron and depleted of elemental silicon, boron, oxygen and carbon as compared to the state at room temperature. Interaction of residual water vapor and hydrogen with the complex oxide layer occurring at low temperatures is believed to be responsible for the enhanced formation of surface hydroxides of the alloy constituents. The processes resulting in the observed redistribution of the elements on the surface of Finemet at low temperatures are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The accuracy of ultrashallow depth profiling was studied by secondary ion mass spectrometry (SIMS) and high‐resolution Rutherford backscattering spectroscopy (HRBS) to obtain reliable depth profiles of ultrathin gate dielectrics and ultrashallow dopant profiles, and to provide important information for the modeling and process control of advanced complimentary metal‐oxide semiconductor (CMOS) design. An ultrathin Si3N4/SiO2 stacked layer (2.5 nm) and ultrashallow arsenic implantation distributions (3 keV, 1 × 1015 cm?2) were used to explore the accuracy of near‐surface depth profiles measured by low‐energy O2+ and Cs+ bombardment (0.25 and 0.5 keV) at oblique incidence. The SIMS depth profiles were compared with those by HRBS. Comparison between HRBS and SIMS nitrogen profiles in the stacked layer suggested that SIMS depth profiling with O2+ at low energy (0.25 keV) and an impact angle of 78° provides accurate profiles. For the As+‐implanted Si, the HRBS depth profiles clearly showed redistribution in the near‐surface region. In contrast, those by the conventional SIMS measurement using Cs+ primary ions at oblique incidence were distorted at depths less than 5 nm. The distortion resulted from a long transient caused by the native oxide. To reduce the transient behavior and to obtain more accurate depth profiles in the near‐surface region, the use of O2+ primary ions was found to be effective, and 0.25 keV O2+ at normal incidence provided a more reliable result than Cs+ in the near‐surface region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) was used to investigate the distribution of cationic starch on pulp fiber. To identify the characteristic fragment ions of the cationic starches, deuterium‐labeled cationic starches were prepared and analyzed using ToF‐SIMS. The starch 2‐hydroxypropyltrimethylammonium chloride derivative generated characteristic fragments at m/z 58 and 59, which were identified as [H2C?N(CH3)2]+ and [N(CH3)3], respectively. The fragmentation patterns were also suggested. From the imaging analysis, the adsorption of the cationic starch on fibers was uneven on individual fibers, as well as between fibers. This may have been on account of fiber morphology and structure. On examining scanning electron microscope (SEM) images, the quaternary ammonium starch derivative (QS) did not penetrate the fiber. No migration of cationic starch was observed under various drying conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon‐containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E‐glass epoxy resin composites were surface treated with the Accelerated Thermo‐molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n‐methylpyrrolidone solution, injected via specially designed flame‐treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF‐SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF‐SIMS showed a significant decrease in silicon‐containing species on the surface after ATmaP treatment. E‐glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and C?O functional groups (from XPS) and higher concentrations of oxygen and nitrogen‐containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF‐SIMS). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We apply a suite of analytical tools to characterize materials created in the production of microfabricated thin layer chromatography plates. Techniques used include X‐ray photoelectron spectroscopy (XPS), valence band spectroscopy, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) in both positive and negative ion modes, Rutherford backscattering spectroscopy (RBS), and helium ion microscopy. Materials characterized include: the Si(100) substrate with native oxide: Si/SiO2, alumina (35 nm) deposited as a diffusion barrier on the Si/SiO2: Si/SiO2/Al2O3, iron (6 nm) thermally evaporated on the Al2O3: Si/SiO2/Al2O3/Fe, the iron film annealed in H2 to make Fe catalyst nanoparticles: Si/SiO2/Al2O3/Fe(NP), and carbon nanotubes (CNTs) grown from the Fe nanoparticles: Si/SiO2/Al2O3/Fe(NP)/CNT. The Fe films and nanoparticles appear in an oxidized state. Some of the analyses of the CNTs/CNT forests appear to be unique: (i) the CNT forest appears to exhibit an interesting ‘channeling’ phenomenon by RBS, (ii) we observe an odd–even effect in the SIMS spectra of Cn species for n = 1 – 6, with the n ≥ 6 ions showing a steady decrease in intensity, and (iii) valence band characterization of CNTs using X‐radiation is reported. Initial analysis of the CNT forest by XPS shows that it is 100 at.% carbon. After one year, only ca. 0.25 at.% oxygen is observed. The information obtained from the combination of the different analytical tools provides a more complete understanding of our materials than a single technique, which is analogous to the story of ‘The Blind Men and the Elephant’. The raw XPS and ToF‐SIMS spectra from this study will be submitted to Surface Science Spectra for archiving. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We present a new method for creating surface chemical patterns where three chemistries can be periodically arranged at alternate positions on a single substrate without the use of top‐down approaches. High‐resolution chemical imaging by time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), with nanometer spatial resolution, is used to prove the success of the patterning and subsequent chemical modification steps. We use a combination of colloidal self‐assembly, plasma etching, self‐assembled monolayers (SAMs) and physical vapour deposition (PVD). The method utilizes a double colloid assembly process in which a first layer of close‐packed colloids is created, followed by plasma etching, coating with gold and deposition of a first SAM layer. A second particle layer is deposited on top of the first layer masking the interstitial spaces containing the first SAM. A second gold layer is deposited followed by a second SAM. After particle removal the surface consists of the pattern containing two different SAMs and a SiO2 layer that can be readily functionalized with silanes. The possibility in the replacement of the two different thiols is investigated by X‐ray photoelectron spectroscopy (XPS) and it was found that no replacement is taking place. ToF‐SIMS imaging is used to show the periodicity of the chemical patterns by tracking unique fragment ions from the different surface regions. The patterning method is adaptable to create smaller or larger chemical patterns by appropriate choice of particle sizes. The patterns are useful for immobilizing biomolecules for cell studies or as multiplexed biosensors.  相似文献   

9.
Poly(styrene) (PS), poly(2,3,4,5,6‐pentafluorostyrene) (5FPS) and their random copolymers were prepared by bulk radical polymerization. The spin‐cast polymer films of these polymers were analyzed using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The surface and bulk compositions of these copolymers were found to be same, implying that surface segregation did not occur. The detailed analysis of ToF‐SIMS spectra indicated that the ion fragmentation mechanism is similar for both PS and 5FPS. ToF‐SIMS quantitative analysis using absolute peak intensity showed that the SIMS intensities of positive styrene fragments, particularly C7H7+, in the copolymers are higher than the intensities expected from a linear combination of PS and 5FPS, while the SIMS intensities of positive pentafluorostyrene fragments are smaller than expected. These results indicated the presence of matrix effects in ion formation process. However, the quantitative approach using relative peak intensity showed that ion intensity ratios are linearly proportional to the copolymer mole ratio when the characteristic ions of PS and 5FPS are selected. This suggests that quantitative analysis is still possible in this copolymer system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used to perform a chemical analysis of long‐chain thiol (CH3(CH2)11SH)‐treated gold, silver, copper and platinum surfaces. All the mass peaks from positive and negative ion spectra within the range m/z = 0–2000 u are studied. ToF‐SIMS data revealed that on gold, silver and copper substrates 1‐dodecanethiol form dense standing‐up phases, but on platinum being a catalytically active substrate, we were able to identify also surface‐aligned parallel lying molecules in addition to a standing thiolate layer. Our study shows that when ToF‐SIMS spectra are analyzed, not only the existence of oligomers but also metal + hydrocarbon fragments give information about the order of SAM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

12.
As one of the simplest volatile organic compounds, glyoxal and its oxidation products were considered to be important precursors to aqueous secondary organic aerosol formation. Herein, we analyzed products from glyoxal oxidation by hydrogen peroxide in dry and liquid samples using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). ToF‐SIMS spectra and spectral principal component analysis (PCA) were used to investigate surface oxidation products. Dry samples were prepared on clean silicon wafers. Liquid samples consisting of glyoxal and hydrogen peroxide (H2O2) were introduced to a vacuum compatible microfluidic reactor prior to UV illumination or dark aging followed by in situ liquid SIMS analysis. A number of reaction products were observed in both dry and liquid samples; different oligomers and carboxylic acids could be formed depending on reaction conditions. In addition, hydrolyzed products were observed in the liquid samples, but not in the dry samples. Although dry samples reveal some products of the aqueous process, they are not fully representative as results from those of the aqueous samples. Our findings suggest that the ability to characterize the liquid surface reaction products provides more realistic information of the reaction products associated with aqueous secondary organic aerosol formation in the atmosphere. Meanwhile, the high mass resolution spectra from the dry sample SIMS measurement are helpful to identify oxidation products in the liquid samples.  相似文献   

13.
A novel physical entrapment process has been explored as an approach to surface incorporation of proteins within pre‐formed alginate fibres under mild conditions. Entrapment of the protein of choice was achieved by exposing the alginate fibres to a Na+‐rich NaCl/CaCl2 mixture solution, which caused the formation of a moderate dissociation layer into which the protein could diffuse. Subsequent addition of a large excess of multi‐valent cations led to the collapse of the surface and entrapment of the protein within the surface. Bovine serum albumin (BSA) was used as a model protein to investigate the effect of process parameters on the entrapment efficiency. Scanning electron microscopy revealed that there was an increase in the surface roughness and a slight increase in the average diameter of the fibres after protein entrapment. The presence of the protein at the surface of alginates after the entrapment process was confirmed by means of confocal laser‐scanning microscopy, X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The ion exchanges at the surface were evident, as detected by XPS and ToF‐SIMS. It was found that under fixed pre‐swelling conditions, the entrapment efficiency increased with increasing treatment time and, particularly, with protein concentration in the exposure solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
For more than three decades, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used for elemental depth profiling. In recent years, cluster primary ion sources (principally, C60+, Bin+, and Aun+) have become widely available, and they can greatly enhance the signal intensity of molecular ions (10–1000 times). Understanding the performance of cluster ion analysis beams used in elemental depth profiling can greatly assist normal ToF‐SIMS users in choosing the optimal analysis beam for depth profiling work. Presently, however, the experimental data are lacking, and such choices are difficult to make. In this paper, hydrogen and deuterium depth profiling were studied using six different analysis beams—25 keV Bi+, Bi3+, Bi5+, 50 keV Bi32+, 10 keV C60+, and 20 keV C602+. The effort shows that cluster primary ions do enhance H? and D? yields, but the enhancement is only about 1.5–4.0 times when compared to atomic Bi+ ions. Because the currents of atomic ion analysis beams are much stronger than the currents of cluster ion analysis beams for most commercial ToF‐SIMS instruments, the atomic ion analysis beams can provide the strongest H? and D? signal intensities, and may be the best choices for hydrogen and deuterium depth profiling. In addition, two representative nuclides, 30Si and 18O, were also studied and yielded results similar to those of H? and D?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The initial oxidation of clean, polycrystalline α‐Th from background CO/CO2 and saturation of the Th surface by O2 has been examined by angle‐resolved Auger electron spectroscopy (ARAES) and time of flight secondary ion mass spectrometry (ToF‐SIMS). Following dissociative adsorption of very low doses of background CO/CO2 (<1 L), the carbon surface population was dominant and spontaneously formed thorium carbide. The accompanying oxygen population increased at a rate roughly one‐third that of the carbon, suggesting simultaneous oxygen incorporation into the bulk. To further corroborate the surface kinetics of adsorbed oxygen, O2 was admitted, following heating and sputter cleaning of the Th; some oxygen atoms continued to diffuse into the bulk until formation of stoichiometric ThO2 at ~37 L. ARAES measurements showed an oxygen concentration gradient in the near‐surface region confirming rapid oxygen incorporation at low doses; however, once the surface is saturated, virtually no variation in the oxygen intensity is observed. AES and ToF‐SIMS depth profiling revealed complete oxide formation to a depth of 2 nm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Films of a series of polymers with variable CF2 segments were studied by angle‐dependent X‐ray photoelectron spectroscopy (ADXPS) and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The effects of the length of the CF2 segment on the surface composition of the polymers were investigated. ADXPS results indicated that the CF2 segment segregated on the surface of the polymers after thermal annealing at temperatures above their bulk glass transition temperatures when the number of CF2 units was increased to 8. Because of the higher surface sensitivity, ToF‐SIMS results showed more CF2 segments at the topmost surface than shown by ADXPS. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Equilibrium of Cr atoms between the surface layer and bulk of a binary alloy was analyzed. The Gibbs adsorption equation was used to obtain the dependence of the adsorption activity of atoms in the surface layer on their activity in the bulk. An approximate thermodynamic method was used to calculate the adsorption of Fe (Ni) and Cr atoms in the surface layers of Fe-Cr and Ni-Cr alloys. According to calculations, there was negative adsorption, X Cr ≪ 1, in the surface layer of the alloys caused by a large difference between the Gibbs surface energies of Cr and Fe (or Ni). The negative adsorption of Cr shifted chemical reaction equilibria on the alloy-oxide film boundary both in oxidation in air and in anodic passivation, 3FeO (NiO) + 2Cr = Cr2O3 + 3Fe(Ni), toward oxide film enrichment in the FeO (or NiO) oxide. A unified method for calculating the composition of oxide films on alloys was used for both processes. The method was based on the use of the initial data on the Gibbs surface energy of metals constituting alloys. The calculated oxide film compositions were close to the experimental X-ray photoelectron spectroscopy data.  相似文献   

18.
X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used to study the surface composition and electronic structure of Finemet, Fe73Si15.8B7.2Cu1Nb3, in the original amorphous state and after gradual heating in vacuum to a temperature of 400 °C and cooling back to room temperature. It was found that relaxation processes occurring during heat treatment well below the crystallization onset caused the physico‐chemical state of Finemet surface to change irreversibly. In the relaxed alloy, the surface originally covered with the native air‐formed oxide was significantly enriched with elemental iron and depleted of other alloy constituents compared with the original state. Yet in the as‐quenched state, clustering of copper atoms on the Finemet surface was detected which was enhanced by heating. The thermal treatment resulted in the selective reduction of iron oxides and caused noticeable changes in the valence band structure and the Fe L3VV Auger spectrum associated with atomic redistribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A systematic study of five different imidazolium‐based room temperature ionic liquids, 1‐butyl‐3‐methylimidazolium acetate, 1‐butyl‐3‐methylimidazolium nitrate, 1‐butyl‐3‐methylimidazolium iodide, 1‐butyl‐3‐methylimidazolium hexafluorophosphate and 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide were carried out by means of time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) in positive and negative ion mode. The compounds were measured under Bi‐ion and Bi‐cluster ions (Bi2–7+, Bi3, 52+) bombardment, and spectral information and general rules for the fragmentation pattern are presented. Evidence for hydrogen bonding, due to high molecular secondary cluster ions, could be found. Hydrogen bonding strength could be estimated by ToF‐SIMS via correlation of the anionic yield enhancement with solvent parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Nitriding phenomena that occur on the surfaces of pure Fe and Fe? Cr alloy (16 wt% Cr) samples were investigated. An Ar + N2 mixture‐gas glow‐discharge plasma was used so that surface nitriding could occur on a clean surface etched by Ar+ ion sputtering. In addition, the metal substrates were kept at a low temperature to suppress the diffusion of nitrogen. These plasma‐nitriding conditions enabled us to characterize the surface reaction between nitrogen radicals and the metal substrates. The emission characteristics of the band heads of the nitrogen molecule ion (N2+) and nitrogen molecule from the glow‐discharge plasma suggest that the active nitrogen molecule is probably the major nitriding reactant. AES and angle‐resolved XPS were used to characterize the thickness of the nitride layer and the concentration of elements and chemical species in the nitride layer. The thickness of the nitride layer did not depend on the metal substrate type. An oxide layer with a thickness of a few nanometers was formed on the top of the nitride layer during the nitriding process. The oxide layer consisted of several species of Nx‐Fey‐O, NO+, and NO2?. In the Fe? Cr alloy sample, these oxide species could be reduced because chromium is preferentially nitrided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号