首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical and electrochemical synthesis of cobalt(II), nickel(II), and copper(II) complexes based on sterically hindered tridentate Schiff bases obtained by the coupling of 2-amino-4,6-di-tert-butylphenol with salicylaldehyde derivatives (H2L, H2L’) was performed. The resulting dinuclear complexes were characterized by elemental analysis, IR spectroscopy, and magnetochemical measurements in the 300–2 K temperature range. The structures of the dinuclear nickel(II) and copper(II) complexes with the composition Ni2L2·2AcOH·2MeOH and Cu2L2, respectively, were established by X-ray diffraction. The copper chelates are characterized by the presence of antiferromagnetic exchange interactions. The mononuclear copper(II) complexes (DMSO)bis[2-(5,7-di-tert-butyl-4-hydroxybenzoxazol-2-yl)phenolato]copper(II) and (DMF)2bis[2-(5,7-di-tert-butyl-4-hydroxybenzoxazol-2-yl)phenolato]copper(II) were isolated upon electrochemical dissolution of copper(0) and were structurally characterized.  相似文献   

2.
Ohno S  Teshima N  Sakai T  Grudpan K  Polasek M 《Talanta》2006,68(3):527-534
A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l−1 for copper and 0.1-5 mg l−1 for iron, respectively, with a sampling rate of 18 h−1. The limits of detection are 50 μg l−1 for copper and 25 μg l−1 for iron. The relative standard deviations (n = 15) are 2% for 0.5 mg l−1 copper and 1.8% for 0.5 mg l−1 iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l−1 of copper and 0.2-5 mg l−1 of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.  相似文献   

3.
Using a new, general approach involving the stepwise progression through pyrrole, dipyrrole, tripyrrole, to tetrapyrrole, followed by cyclisation of the resulting a,c-biladiene by the copper salt method, syntheses of isocoproporphyrin tetramethyl ester (1b), coproporphyrin-III tetramethyl ester (24), protoporphyrin-IX dimethyl ester (26), 2,4,6,7-tetrakis (2-methoxycarbonylethyl)-5-methoxycarbonylmethyl-1,3,8-trimethylporphin (29) (the ester of the pentacarboxylic porphyrin recently associated with haem metabolism), rhodoporphyrin-XV dimethyl ester (27) and 2,4,7-triethyl-6-methoxycarbonyl-1,3,5,8-tetramethylporphin (28), are described.The route employs condensation of unsymmetrically substituted pyrromethanes with 2-formyl-5-methylpyrroles to give crystalline and fully characterised tripyrrene salts in high yield. These are then condensed with a second mole of a different 2-formyl-5-methylpyrrole to give very high yields of a,c-biladiene dihydrobromides; cyclisation with copper(II) chloride indimethylformamide gives copper(II) porphyrins which are demetallated in trifluoroacetic acid containing sulphuric acid to give high overall yields of the corresponding metal free porphyrins.  相似文献   

4.
Two copper(II) complexes of the saccharinate anion (sac) with piperazine (ppz) and N-(2-aminoethyl)piperazine (aeppz), namely [Cu(sac)2(ppz)(H2O)]n (1) and trans-[Cu(sac)2(aeppz)2] (2), have been synthesized and characterized by elemental analyses, UV–Vis, FT-IR, TGA/DTA, X-ray diffraction and magnetic measurements. The ppz ligands in 1 bridge the copper(II) centers through both nitrogen atoms to form a 1D helical chain structure and the distorted trigonal-bipyramidal coordination geometry at each copper center is completed by an aqua and a pair of N-bonded sac ligands. The helical chains are linked by Ow–H?O hydrogen bonds to build a 2-D network. In complex 2, copper(II) ions are octahedrally coordinated by two sac anions and two neutral aeppz ligands, displaying a distorted octahedral coordination. Sac is O-bonded via the carbonyl group, while ppzea acts as a N,N′-bidentate chelating ligand. The molecules are connected by N–H?N and N–H?O hydrogen bonds, forming a linear chain. In the thermal decomposition of both complexes, the removal of the aqua and ppz or aeppz ligand takes place endothermically in the first stages and the sac moiety undergoes highly exothermic decomposition at higher temperatures to give CuO.  相似文献   

5.
A new Schiff base N-[(E)-(2-hydroxyphenyl)methylidene]-N’-[(Z)-(2-hydroxyphenyl)methylidene]ethanebis(thioamide) (LC) containing sulfur, nitrogen, and oxygen atoms has been synthesized by condensation of ethanebis(thioamide) with 2-hydroxybenzaldehyde. Metal complexes were synthesized by reaction of the new ligand with copper(II) and cobalt(II) as nitrate salts and with rhodium(III) as chloride salt, using hot absolute ethanol as solvent. All the new compounds were characterized by use of different physicochemical techniques including UV–visible spectroscopy, magnetic susceptibility, IR spectroscopy, molar conductance, and determination of metal content. It is proposed the paramagnetic copper and cobalt complexes adopt octahedral geometry whereas the diamagnetic rhodium complex has octahedral geometry.  相似文献   

6.
Binuclear copper(II) complexes with acyldihydrazones of 1,3- or 1,4 benzenedicarboxylic acid and 5-methyl- or 5-bromo-2-hydroxyacetophenone in which coordination polyhedra are connected by an aromatic bridge have been synthesized and studied. The structure of the copper(II) complex with diacylhydrazone of isophthalic acid and 2-hydroxy-5-methylacetophenone (H4L) of composition [Cu2L · 3Py] was studied by X-ray diffraction. The crystals are monoclinic: a = 12.1996(12) Å, b = 17.7295(17) Å, c = 17.9339(17) Å, β = 109.7450(10)°, space group P21/n, Z = 4. The complex is of the “dimer of dimers” type and contains two binuclear subunits that bind together into a centrosymmetric dimer owing to the coordination of the copper cation to the phenoxyl oxygen atom of a neighboring binuclear molecule to form the Cu2O2 moiety, in which the copper atoms are 3.409 Å apart. The distance between the copper(II) cations in the binuclear subunit is 8.56 atoms (2N + O) of the doubly deprotonated acylhydrazone moiety and the nitrogen atom of the pyridine molecule. One of the copper cation is additionally coordinated to an extra pyridine molecule so that its coordination sphere is completed to a tetragonal pyramid. The second copper atom is involved in additional interaction with the phenoxyl oxygen atom of the neighboring molecule. The EPR spectra of solutions of the binuclear complexes show an isotropic signal of four HFS lines (g o = 2.065–2.143, a Cu = 52.1–66.5 × 10?4 cm?1) typical of mononuclear copper(II) complexes.  相似文献   

7.
Three new mononuclear complexes of copper(II), viz. [Cu(L)(N3)Cl] (1), [Cu(L′)(H2O)]ClO4 (2) and [Cu(L″)] (3) where L = N-(3-aminopropyl)-N-methylpropane-1,3-diamine, L′ = 2-(N-{3-[(3-aminopropyl)(methyl)amino]propyl}ethanimidoyl)phenolate ion and L″ = 2,2′-{(methylimino)bis[propane-3,1-diylnitrilo(1E)eth-1-yl-1-ylidene]}diphenolate ion, have been prepared. The synthesis of complex 1 has been achieved by reacting copper chloride with the triamine (L) and sodium azide in a 1:1:1 M ratio. The other two compounds have been synthesized by the reaction of copper perchlorate with the same triamine, L, plus 2-hydroxyacetophenone in a molar ratio of 1:1:1 (for 2) and 1:1:2 (for 3), so that the respective tetradentate and pentadentate Schiff bases HL′ and H2L″ are formed in situ to bind the copper(II) ions. The complexes have been characterized by microanalytical, spectroscopic and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of all the three complexes adopt a distorted square pyramidal geometry and are held together by either intermolecular H-bonding (in 1 and 2) or C-H?π interactions (in 3) to form supramolecular networks in the solid state.  相似文献   

8.
The reactions of 4-(2-bromophenyl)-1,2,3-thia-and -selenadiazoles with amines in the presence of potassium carbonate and copper(I) iodide afforded 2-aminobenzo[b]chalcogenophenes. The corresponding thiaand selenamides, prepared by interaction of 4-(2-bromophenyl)-1,2,3-thia- and -selenadiazoles with amines in the absence of copper salt, were transformed into 2-aminobenzo[b]chalcogenophenes by the action of potassium carbonate and copper(I) iodide in DMF in different yields.  相似文献   

9.
In this paper, a novel and highly efficient copper/palladium-catalyzed tandem intramolecular Ullman-type C-O(N) coupling reaction of 2-(gem-dibromovinyl)phenols(anilines) followed by an intermolecular arylation of azoles through C-H activation has been developed. In the presence of CuBr with Pd(PPh3)2Cl2 used as co-catalyst, and LiOtBu as a base, the one-pot reactions of 2-(gem-dibromovinyl)phenols and 2-(gem-dibromovinyl)anilines with a variety of azoles, including oxazoles, imidazoles, thiazoles, and oxadiazoles underwent smoothly in toluene at 100 °C to generate the corresponding biheteroaryl products in high yields. A tentative mechanism of copper/palladium-catalyzed tandem reaction was described.  相似文献   

10.
The crystal and molecular structure of the title compound has been determined by a single crystal X-ray diffraction study using standard Patterson and Fourier methods. The structure was refined by a block-diagonal least-square procedure to a finalR value of 0.16 for 3454 reflections. Crystals are monoclinic, space groupP21/c, witha 14.007(5), b 12.224(5), c 28.358(8)A?, β 99.60(1)°, andZ - 4.The molecule consists of a central rhombus-type core of copper atoms to which the alkenyl and aryl groups are bound in a bridging fashion (two electron-three center bonding). The two alkenyl and the two aryl groups each occupy adjoining edges of the Cu4 core. The dimethylamino groups of the alkenyl ligand coordinate to copper, whereas those of the bridging aryl ligand are free. As a result the copper core is made up of copper atoms which are alternatingly two- and three-coordinate.The structure is discussed in terms of structural information now available for organocopper compounds. The geometry of the Cu2C (bridge) moiety in organocopper cluster compounds as expected varies little with the nature of the bridging one-electron organo ligand (alkyl, alkenyl, alkynyl or aryl).  相似文献   

11.
The crystal structures of nitrato-{4-bromo-2-[2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (I) and nitrato-{2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (II) are determined. The crystals of compound I are orthorhombic: a = 14.157(3) Å, b = 15.420(3) Å, c = 17.494(4) Å, space group Pbca, Z = 8, R = 0.067. The crystals of compound II are monoclinic: a = 10.675 Å, b = 13.973 Å, c = 14.007 Å, β = 111.92°, space group P21/n, Z = 4, R = 0.0464. In the structures of compounds I and II, the copper atom coordinates, correspondingly, singly deprotonated 4-bromo-2-[(2-hydroxyethylimino)methyl]phenol and 2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenol molecules, and 3,5-dibromopyridine, and the nitrate ion. The coordination polyhedron of the copper ion in complexes I and II is a slightly distorted tetragonal pyramid. The bases of the pyramids are formed by the imine and pyridine nitrogen atoms and the phenolic and alcoholic oxygen atoms, and the axial vertices are occupied by the oxygen atoms of the monodentate nitrato groups. In the complexes under study, the six-membered metallocycles have asymmetric gauche conformation. In crystal, complexes I are united, due to the slip plane a, through bifurcate hydrogen bonds into infinite chains along the direction [100]. Complexes II in crystal form two-dimensional networks by means of hydrogen bonds.  相似文献   

12.
The determination of antimony and tin impurities in copper by anodic stripping voltammetry on a hanging mercury drop electrode is described. Antimony and tin were previously separated from copper by distillation with hydrobromic acid or a mixture of hydrobromic acid and hydrochloric acid. The method was applied to the analysis of various high-purity copper samples, commercially available, showing satisfactory sensitivity and precision. The determination limit was about 1.4· 10-9M for antimony and 7·10-10M for tin in solution, for pre-electrolysis times of respectively 15 and 25 min; this corresponds to 0.8 p.p.b. of antimony and 0.3 p.p.b. of tin for a 2-g sample and a final volume of 10 ml after separation.  相似文献   

13.
Complex compounds ML2 of copper(II), nickel(II), and cobalt(II) with 2-(2-hydroxy-5-nitrophenyl)-4,4-diphenyl-1,4-dihydro-2H-3,1-benzoxazine and 2-(2-hydroxyphenyl)-4,4-diphenyl-1,4-dihydro-2H-3,1-benzoxazine (HL) were prepared by electrochemical and chemical syntheses. The complex formation involves the azomethine form of the ligand and gives a six-membered chelate cycle comprising deprotonated phenol and azomethine groups. The coordination entity has a planar structure with trans arrangement of the nitrogen and oxygen atoms.  相似文献   

14.
The stability constants of the complexes of 4-(2-pyridylazo)-resorcinol (I) with copper(II), cobalt-(II), zinc(Il), lead(ll), and uranium(VI) were determined by potentiometric titration in aqueous media, and were shown to have very high values, the stability constant of the copper(ll) complex approaching that of the copper(ll)-EDTA complex. The nickel(II) complex was shown to behave anomalously. The stability constants were also determined by this method in 1:1 dioxan/water, and the values obtained compared with those for the complexes of salicylidene-2-aminopyridine (II), 2-(o-hydroxy-phenyl-imino-methyl)-pyridine(III), and benzeneazoresorcino (IV). It is shown that chelation by (1) is terdentate, involving the pyridine nitrogen, the o-hydroxyl group and the azo nitrogen farthest from the heterocycle.The solid copper(II) complexes of these four ligands were prepared; in the solid complexes the azo nitrogen nearest the heterocycle plays a greater part than in the complexes in solution.  相似文献   

15.
A new one-dimensional copper(II) polymer, [Cu4(dmapox)2(SCN)4(CH3OH)2] n , where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide, was synthesized and characterized by elemental analysis, conductivity measurement, IR, and electronic spectral studies. The crystal structure of the copper(II) complex has been determined by X-ray single-crystal diffraction. The complex crystallizes in triclinic, space group ? 1 and exhibits infinite one-dimensional copper(II) polymeric chain bridged both by bis-tridentate μ-trans-dmapox and μ-1,3-thiocyanato ligand. The environment around the copper(II) atom can be described as distorted square-pyramid. The Cu···Cu separations through the oxamidate and thiocyanato bridges are 5.246(2) Å (Cu1–Cu1i), 5.2649(14) Å (Cu2–Cu2ii), and 5.8169(15) Å (Cu1–Cu2), respectively. The interaction of the copper(II) complex with herring sperm DNA (HS-DNA) has been investigated by using absorption and emission spectral and electrochemical techniques and viscometry. The results reveal that the copper(II) complex may interact with DNA in the mode of groove binding with the intrinsic binding constant of 2.56 × 105 M?1.  相似文献   

16.
New trans-disubstituted macrocyclic ligands, 1,8-[N,N-bis(3-formyl-12-hydroxy-5-methyl)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L1), 1,8-[N,N-bis(3-formyl-12-hydroxy-5-bromo)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L2), N,N-bis[1,8-dibenzoyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L3), N,N-bis[1,8-(2-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L4), and N,N-bis[1,8-(4-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L5) were synthesized. The ligands were characterized by elemental analysis, FT IR, 1H NMR and mass spectrometry studies. The crystal structure of L1 is also reported. The copper(II) and nickel(II) complexes of these ligands were prepared and characterized by elemental analysis, FT IR, UV-Vis and mass spectral studies. The cyclic voltammogram of the complexes of ligand L1-3 show one-electron quasi-reversible reduction wave in the region −0.65 to −1.13 V, whereas that of L4 and L5 show two quasi-reversible reduction peaks. Nickel(II) complexes show one electron quasi-reversible oxidation wave at a positive potential in the range +0.95 to +1.06 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff 1.70-1.73 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. The ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.  相似文献   

17.
A series of chiral C2-symmetric bis(oxazoline) ligands containing dibenzo[a,c]cycloheptadiene units were synthesized. The copper complexes, prepared in situ from copper (I)-triflate and the new enantiopure oxazoline ligands, were assessed as chiral catalysts in the enantioselective cyclopropanation of styrene with diazoacetate. Enantioselectivities up to 82 and 62%, respectively, for trans- and cis-2-phenylcyclopropanecarboxylate were observed.  相似文献   

18.
New azido-bridged [MnIII(salabza)(μ-1,3-N3)]n (1), and [CuII4(salabza)2(μ-1,1-N3)2(N3)2(HOCH3)2],(2) complexes with an unsymmetrical Schiff base ligand, {H2salabza = N,N’-bis(salicylidene)-2-aminobenzylamine}, have been synthesized, characterized by spectroscopic and electrochemical methods, and their crystal structures have been determined by X-ray diffraction. In complex 1, each manganese(III) atom is coordinated with N2O2 donor atoms from salabza and two adjacent Mn(III) centers are linked by an end-to-end (EE) azide bridge to form a helical polymeric chain with octahedral geometry around the Mn(III) centers. Complex 2 is a centrosymmetric tetranuclear compound containing two types of Cu(II) centers with square pyramidal geometry. Each terminal copper atom is surrounded by N2O2 atoms of a salabza ligand, and the oxygen atom of the methanol molecule. Each central copper(II) ion is coordinated with two phenoxo oxygen atoms from one salabza, one terminal azido, and two end-on (EO) bridging azido ligands. The central copper(II) ions are linked to each other by the two end-on (EO) azido groups.  相似文献   

19.
New coordination polymer catena-poly[(N,N-diethylglycinato-κON)copper(II)-μ-[N,N-diethylglycinato-κO1N:O2]] has been obtained by single-crystal X-ray diffraction. The copper(II) was surrounded with two amino N and two carboxyl O atoms in trans position in the coordination plane. Discrete polymeric chains were produced by axial coordinative bonding between copper(II) and carbonyl oxygen atom from adjacent asymmetric unit. Molecular mechanics (MM) force field developed to study the properties of copper(II) amino acid complexes reproduced well intermolecular aliphatic–aliphatic interactions between ethyl chains and C–H?O hydrogen bonding. The relative unit cell volume reproduction was 0.3%. Theoretical conformational analysis showed that experimentally obtained conformer was not the most stable in vacuo. The calculations of the unit cell packings and intermolecular interactions for a series of conformers elucidated the reasons that governed the experimentally obtained conformer to appear in the real crystal structure. MM results suggest that intermolecular aliphatic–aliphatic interactions between ethyl groups affected a conformational change concurrent with the change in the copper(II) coordination sphere upon crystallization.  相似文献   

20.
Borges F  Guimarães C  Lima JL  Pinto I  Reis S 《Talanta》2005,66(3):670-673
Studies on the complexation of copper(II) by phenolic acids, as ligand models of humic substances were done by potentiometry. The acids under study were: 3,4-dihydroxyhydrocinnamic acid or hydrocaffeic acid (1), 3,4-dihydroxyphenylacetic acid (2) and 3,4-dihydroxybenzoic acid or protocatechuic acid (3). Acidity constants of the ligands and the formation constants of metal-ligand complexes were evaluated by computer programs. The carboxylic group of the phenolic acids has different pKa1 values, being the dissociation constants intrinsically related with the distance between the function and the aromatic nucleus. The results obtained allow concluding that acidity constants of the catechol moiety of the compounds are similar with pKa2 and pKa3 values between 9.47-9.41 and 11.55-11.70. The complexation properties of the three ligands towards copper(II) ion are quite similar, being the species found not different either in nature or stability. Although the model ligands have some structural differences no significant differences were found in their complexation properties towards copper(II). So, it can be postulated that complexation process is intrinsically related with the presence of a catechol group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号