首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
退火处理提高P3HT:PCBM聚合物太阳能电池光伏性能   总被引:2,自引:0,他引:2  
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化.  相似文献   

2.
吴江  谢志元  郭世杰 《应用化学》2012,29(12):1417-1422
研究了刮涂制备P3HT:PCBM(P3HT:聚3-己基噻吩,PCBM:[6,6]-苯基-C61-丁酸甲酯)活性层的过程中,基底温度对P3HT:PCBM活性层薄膜性质和电池性能的影响.结果表明,提高基底温度在缩短薄膜干燥时间的同时,抑制了PCBM相的大尺度聚集,并改善了P3HT:PCBM薄膜中P3HT在(100)方向上的结晶程度,但降低了π-π共轭方向上的有序度.制备的光伏电池经过进一步退火处理后可形成良好的互穿网络结构,能量转换效率可达3.93%.  相似文献   

3.
刘智勇  徐文涛  王宁  杨小牛 《应用化学》2012,29(12):1423-1427
采用喷涂工艺制备了结构为ITO/ZnO/ P3 HT:PCBM/V2O5/Ag(P3HT:聚噻吩;PCBM:6,6-苯基-C61-丁酸甲酯)的大面积倒置光伏器件,有效面积为1.0×1.1 cm2.光谱测试结果表明,退火处理后,P3HT:PCBM薄膜吸收显著增强,并且产生一定程度的红移.采用ZnO和V2 O5代替LiF和PEDOT:PSS(聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐)作为器件修饰层,避免了PEDOT:PSS对ITO的腐蚀和LiF潮解,采用Ag代替Al作为金属背电极避免了Al被氧化.经过后退火处理器件的效率从1.1%提升至1.65%.器件的稳定性相对于传统结构有了大幅提升,8周后器件效率只衰减10%.  相似文献   

4.
采用微乳液法制备NaLu(WO4)2-x(MoO4)x:8%Eu3+(x=0, 0.5, 1.0, 1.5, 2.0)/y%Eu3+,5%Tb3+(y=1, 3, 5, 7, 9)系列荧光粉.通过X射线衍射(XRD)表征,所制样品的X射线衍射峰与标准卡片PDF#27-0729基本吻合,表明所制的样品为白钨矿结构,属于四方晶系.扫描电镜SEM显示制备的纳米粒子是梭子状的,粒径大约是110 nm.激发发射光谱显示,在Eu3+离子掺杂浓度为8%时,NaLu(WO4)(MoO4):Eu3+发光强度最大.NaLu(WO4)2-x(MoO)x :8%Eu3+(x=0, 0.5, 1.0, 1.5, 2.0)荧光粉在Mo/W比达到1:1(x=1)时发光强度最大,强烈的红光发射表明该材料可用于白光LED材料.该荧光粉在268、394和466 nm波长光激发下分别发出橙红色、黄色和淡黄色光,可以满足不同光色需要.NaLu(WO)(MoO):y%Eu3+,5%Tb3+(y=1, 3, 5, 7, 9)荧光粉,随着y值增大,从绿光区(x=0.278, y=0.514)进入白光区(x=0.356, y=0.373), (x=0.278, y=0.313),同时观察到Tb3+到Eu3+有效能量传递.  相似文献   

5.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

6.
一种吡嗪铱(Ⅲ)配合物的晶体结构及光物理性质   总被引:1,自引:0,他引:1  
合成了一种铱配合物二(4,4''-二氟-5-甲基-2,3-二苯基吡嗪) (乙酰丙酮)合铱[(MDPPF)2Ir(acac)]的有机电致发光器件(OLED),利用X射线单晶衍射仪测定了该化合物的晶体结构. 利用紫外-可见吸收光谱、发射光谱对其光物理性质进行研究. 结果表明: (MDPPF)2Ir(acac)的单晶结构属于三斜晶系, P1空间群,晶胞参数a=1.13984(3) nm, b=1.26718(3) nm, c=1.29541(3) nm, α=93.7181(19)°, β=101.638(2)°, γ=110.853(3)°, V=1.69336(7) nm3; (MDPPF)2Ir(acac)在二氯甲烷溶液中的发射峰为555 nm. 以(MDPPF)2Ir(acac)为客体材料,制备了结构为ITO/NPB(40 nm)/CBP: (MDPPF)2Ir(acac)(20 nm)/TPBi(10 nm)/Alq3 (30 nm)/LiF(1 nm)/Al(100 nm)的一系列不同掺杂浓度器件, 器件的发射峰位于558 nm, 最大亮度达到32700 cd·m-2,最大电流效率44.3 cd·A-1, 最大功率效率20.7 lm·W-1.  相似文献   

7.
报道了利用聚(3-己基噻吩)(P3HT)作为前置缓冲层来弥补(4,8-双-(2-乙基己氧基)-苯并[1,2-b:4,5-b']二噻吩)-(4-氟代噻并[3,4-b]噻吩(PBDT-TT-F):[6,6]-苯基-C61-丁酸甲酯(PC61BM)共混体相异质结(BHJ)电池对450-600 nm处光谱响应不足的新的器件结构设计思路. 光谱带隙为1.8 eV的PBDT-TT-F 在550-700 nm处有很强的光谱吸收, 在有机太阳电池器件上有很好的应用潜能. 但其在350-550 nm处的吸收不强, 影响了器件对太阳光谱的利用效率. 与此相比, P3HT薄膜的光谱吸收主要在450-600 nm范围内, 同PBDT-TT-F 形成良好的互补关系. 新设计的器件外量子效率(EQE)研究结果表明, 利用P3HT 作为前置缓冲层可以与PBDT-TT-F:PC61BM薄膜中的PC61BM形成平面异质结, 从而拓展了器件在450-600 nm处的光谱响应范围,实现光谱增感作用. 优化P3HT的厚度为20 nm左右, 器件对外输出的短路光电流密度从11.42 mA·cm-2提高到12.15 mA·cm-2, 达到了6.3%的提升.  相似文献   

8.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩∶聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT∶PSS/P3HT∶PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1∶1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

9.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

10.
利用2,2''-(1,4-亚苯基)二(亚苯基)二(硫基)苯二羧酸(H2L1)和2,2''-(2,3,5,6-四甲基-1,4-亚苯基)二(亚甲基)二(硫基)苯二甲酸(H2L2)2个柔性二羧酸分别与镧系金属盐反应,通过溶剂热方法合成了3个配位聚合物:{[(NH2(CH3)2][Nd(L1)2(DMF)]·2DMF}n(1)和{[Ln(L2)1.5(H2O)(DMF)2]·2DMF}n[Ln=Ce(2),Pr(3)]。利用元素分析、红外、粉末X射线衍射、热重分析等对配合物进行了表征。X射线单晶衍射分析表明:3个配合物均为二维的层状结构,并且2个配体在配合物中表现出不同的构象。(L1)2-在配合物1中表现出顺式和反式2种构象,(L22)2-在配合物23中仅表现出反式构象。此外,对配合物的热稳定性和荧光性质也进行了研究。  相似文献   

11.
Optical properties of a blend thin film (1:1 wt) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exposed to a stepwise heating and cooling, have been reported and compared with the properties of pure PCBM and P3HT films. The UV–Vis(T) absorption measurements were performed in situ, during annealing and cooling runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows to observe the changes of absorption coefficient spectra and absorption edge parameters: the energy gap (EG) and the Urbach energy (EU), connected with the length of conjugation and structural disorder of thin film, respectively. Several stages, during annealing/cooling runs, were distinguished for the P3HT:PCBM blend film and related to the following processes, as an increase of P3HT crystallinity in the blend, the orderly stacking of polymer chains, thermally induced structural defects and the phase separation, caused by an aggregation of PCBM in the polymer matrix. These changes were also observed on the P3HT:PCBM film surface, by means to the microscopic studies.  相似文献   

12.
It is known that poly(3‐alkylthiophene) (P3AT) side‐chain length notably influences the photovoltaic performances of relating devices. However, comprehensively study on its impact on the structures of P3ATs and their blends with [6, 6]‐phenyl‐C61 butyric acid methyl ester (PCBM) is insufficient. By using solid‐state NMR and FTIR techniques, four P3ATs and their PCBM blends are investigated in this work, focusing on the phase structures as modulated by side‐chain length. Recently, we revealed multiple crystalline main‐chain packings of packing a and b together with a mesophase in poly(3‐butylthiophene) (P3BT) films (DOI: 10.1021/acs.macromol.6b01828). Here, the semicrystalline structures are investigated on poly(3‐hexylthiophene) (P3HT), poly(3‐octylthiophene) (P3OT), and poly(3‐dodecylthiophene) (P3DDT) with traditional form I modification, where packing a and the amorphous phase are probed. Furthermore, crystallized side chain within packing a is detected in both P3OT and P3DDT films, which shows a FTIR absorption at 806 cm−1. Structural studies are also conducted on P3AT:PCBM blends. Compared with the pure P3ATs, the polymer crystallinities of the blends show reduction of about 40% for P3OT and P3DDT, whereas only about 10% for P3HT. Moreover, in P3BT:PCBM and P3HT:PCBM, the crystalline polymers and PCBM are phase separated, while in P3OT:PCBM and P3DDT:PCBM, blend components are mostly miscible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 751–761  相似文献   

13.
In this study, the maleimide‐thiophene copolymer‐functionalized graphite oxide sheets (PTM21‐GOS) and carbon nanotubes (PTM21‐CNT) were developed for polymer solar cell (PSC) applications. The grafting of PTM21‐OH onto the CNT and GO sheets was confirmed using FTIR spectroscopy. PTM21‐CNT and PTM21‐GOS exhibited excellent dispersal behavior in organic solvents. Better thermal stability was observed for PTM21‐CNT and PTM21‐GOS as compared with that for PTM21‐OH. In addition, the optical band gaps of PTM21‐GOS and PTM21‐CNT were lower than that of PTM21‐OH. We incorporated PTM21‐GOS and PTM21‐CNT individually into poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends for use as photoconversion layers of PSCs. Good distributional homogeneity was observed for PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend film. The UV–vis absorption peaks of the blend films red‐shifted slightly upon increasing the content of PTM21‐GOS or PTM21‐CNT. The band gap energies and LUMO/HOMO energy levels of the P3HT/PTM21‐GOS and P3HT/PTM21‐CNT blend films were slightly lower than those of the P3HT film. The conjugated polymer‐functionalized PTM21‐GOS and PTM21‐CNT behaved as efficient electron acceptors and as charge‐transport assisters when incorporated into the photoactive layers of the PSCs. PV performance of the PSCs was enhanced after incorporating PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
Indium tin oxide (ITO) is used as a substrate was covered with 4-[4-(4-methoxy-N-naphthalen-2-ylanilino) phenyl] benzoic acid (MNA) as a self-assembled monolayer (SAM). Poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) were mixed and used as a donor–acceptor in organic solar cell (OSC). The MNA (SAM) layer is used as an interface instead of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) for hole injection. The HOMO-LUMO energy level of MNA-SAM molecule and the electronic charge distribution were calculated theoretically using Chemissian software. The HOMO-LUMO energy level of the MNA is calculated as EHOMO = ?5.10 eV and ELUMO = ?1.60 eV. The OSC modified with MNA showed an efficient performance in the absence of PEDOT: PSS as hole transport layer. The annealing of the ITO/SAM/P3HT: PCBM films at different temperatures are also investigated to study the effect of reducing defects. The interface structures of the organic semiconductor layer on ITO were characterized by Atomic Force Microcopy (AFM). In addition, Kelvin Probe Microscopy (KPM) is used to understand how the annealing changes the surface potential energy of the ITO/SAM substrate. Using the KPM method, which measures the surface potential energy of the films, the energy bands of the ITO were increased to maximum 5.09 eV. The ITO/SAM/P3HT: PCBM film's surface potential was determined to be 0.18 eV after being annealed at 80 °C. The surface potential of the modified films was discovered to be 0.33 V and 0.39 V when the annealing temperature was raised from 80 °C to 120 °C and 160 °C. The maximum device efficiency was demonstrated by the ITO/SAM/P3HT: PCBM film after an hour of annealing at 160 °C.  相似文献   

15.
A key challenge to the development of polymer‐based organic solar cells is the issue of long‐term stability, which is mainly caused by the unstable time‐dependent morphology of active layers. In this study, poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl C60‐butyric acid methyl ester (PCBM) blend is used as a model system to demonstrate that the long‐term stability of power conversion efficiency can be significantly improved by the addition of a small amount of amorphous regiorandom P3HT into semicrystalline regioregular one. The optical properties measured by UV–vis absorption and photoluminescence reveal that regiorandom P3HT can intimately mix with PCBM and prevent the segregation of PCBM. In addition, X‐ray scattering techniques were adopted to evidence the retardation of phase separation between P3HT and PCBM when regiorandom P3HT is added, which is further confirmed by optical microscopy that shows a reduction of large PCBM crystals after annealing at high temperature in the presence of regiorandom P3HT. The improvement of the long‐term stability is attributed to the capability of amorphous P3HT to be thermodynamically miscible with PCBM, which allows the active layer to form a more stable structure that evolves slower and hence decelerates the device decay. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 975–985  相似文献   

16.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

17.
Two indole-containing fullerene derivatives, N-hydrogen-2-[3-(N-2-ethylhexylindolyl)][60]fulleropyrrolidine (EHIHC60P), and N-(2-ethylhexylindolyl))-2-[3-(N-2-ethylhexylindolyl)][60]fulleropyrrolidine (DEHIC60P) were synthesized by the typical Prato reaction. The absorption spectra, electrochemical properties of the two compounds were measured. Inverted solar cells were fabricated with the structure of ITO/ZnO/poly(3-hexylthiophene) (P3HT):fullerene derivatives/MoO3/Ag. The highest power conversion efficiencies (PCEs) of 3.32% and 3.23% were obtained for P3HT/EHIHC60P and P3HT/DEHIC60P based solar cells at the composite ratio of 1:1 after the active layers were annealed at 150 °C under inert atmosphere, with a open-circuit voltage (Voc) of 0.66 V and 0.74 V, respectively. For comparison, the device based on P3HT/PCBM at the same conditions showed the PCE of 3.28%, with a Voc of 0.61 V. The influence on the photovoltaic property of the fullerene derivatives, which was induced by some subtle changes in the chemical structure was compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号