首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The microwave spectra of 13CH2OH-CHO, CH2OH-13CHO, and CH2OH-CH18O are reported and have been used in combination with previously published data on other monosubstituted glycolaldehydes to determine the substitution structure of the molecule as r(CO) = 1.209 Å, r(C-O) = 1.437 Å, r(C-C) = 1.499 Å, r(O-H) = 1.051 Å, r(C-Hald) = 1.102 Å, r(C-Halc) = 1.093 Å, r(O β H) = 2.007 Å, r(O β O) = 2.697 Å, ∠(C-CO) = 122°44', ∠(C-C-Hald) = 115°16', ∠(C-C-O) = 111°28', ∠(C-O-H) = 101°34', ∠(C-C-Halc) = 109°13', ∠(H-C-H) = 107°34', ∠(O-H β O) = 120°33', ∠(H β OC) = 83°41', and ∠(O-H, C0) = 24°14'. The intramolecular hydrogen bond and the other structural parameters are discussed and compared to related molecules. The dipole moment is redetermined to be μa = 0.262 ±0.002 D, μb = 2.33 ± 0.01 D, and μtot = 2.34 ± 0.01 D. Relative intensity measurements yielded 195 ± 30 cm?1 for the C-C torsional fundamental and 260±40 cm?1 for the lowest in-plane skeletal bending mode. Computations performed by the CNDO/2 method correctly predict the observed cis hydrogen-bonded conformer to be the energetically favoured one and in addition yield some indication of the existence of at least two other non-hydrogen-bonded forms of higher energy.  相似文献   

2.
The gas phase molecular structure of 2,3-dimethyl-2-butene has been investigated by the electron, diffraction technique. The following structural parameters (ra structure) have been obtained: CC = 1.336±0.004 Å; C-C = 1.505±0.002 Å; C-H = 1.092±0.003 Å; ∠CC-C = 123.4±0.4°; ∠C-C-H = 110.5±0.7°; methyl torsional angle CC-C-H = 31±3°. If local C3v symmetry is assumed then a twist of 13 ±4° of the carbon skeleton is observed. This twist reduces to virtually 0° if no local symmetry is imposed on the methyl group. The twisted structure is in good agreement with that obtained by valence force-field calculations.  相似文献   

3.
The structures of propene and 3,3,3-trifluoropropene have been studied by electron diffraction intensities measured in the present study and rotational constants reported in the literature. The following average structures have been determined: For propene, rg(CC) = 1.342 ± 0.002 Å, rg(C-C) = 1.506 ± 0.003 Å, rg(C-H)vinyl = 1.104 ± 0.010 Å, rg(C-H)methyl = 1.117 ± 0.008 Å, ∠(C-CC) = 124.3 ± 0.4°, ∠(CC-H) = 121.3 ± 1.4°, and ∠(C-C-H) = 110.7 ± 0.9°; for trifluoropropene, rg(CC) = 1.318 ± 0.008 Å, rg(C-C) = 1.495 ± 0.006 Å, rg(C-H)= 1.100 ± 0.018 Å, rg(C-F) = 1.347 ± 0.003 Å, ∠(C-CC) = 125.8 + 1.1°, ∠(C-C-F) = 112.0 ± 0.2°, where the valence angles refer to the rav structure, and the uncertainties represent estimated limits of experimental error. A simple set of quadratic force constants for each molecule has been estimated. Regular trends have been observed in the CC and C-C bond distances and the C-CC angles in these and related molecules. Significant differences between the CC, C-C and C-F distances and the C-C-F angle in trifluoropropene and in hexafluoroisobutene reported by Hilderbrandt et al. have been indicated.  相似文献   

4.
The structures of isobutene and 2,3-dimethyl-2-butene have been studied by gas electron diffraction. For isobutene the rotational constants obtained by Laurie by microwave spectroscopy have also been taken into account. Leastsquares analyses have given the following rg bond distances and valence angles (rav for isobutene and rα for dimethylbutene): for isobutene, r(CC) = 1.342±0.003 Å, r(C-C)= 1.508±0.002Å, r(C-H, methyl) = 1.119±0.007 Å, r(C-H, methylene) = 1.095±0.020 Å, ∠(C-CC) = 122.2±0.2°, ∠(H-C-H) = 107.9±0.8°, and ∠(C-C-H) 121.3±1.5°; for dimethylbutene, r(CC)= 1.353 ±0.004 Å, r(C-C) = 1.511±0.002 Å, r(C-H) = 1.118± 0.004 Å, ∠(C-CC)= 123.9±0.5°, and ∠(H-C-H)= 107.0±1.0°, where the uncertainties represent estimated limits of experimental error. The bond distances and valence angles in these molecules and in related molecules are compared with one another. The CC and C-C bond distances increase almost regularly with the number of methyl groups, and the C-C bonds in isobutene and dimethylbutene are shorter than those in acetaldehyde and acetone by about 0.01 Å. Systematic variations in the C-CC angles suggest the steric influence of methyl groups.  相似文献   

5.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

6.
The molecular structures of cis-3-hexene and of trans-3-hexene in the gas phase have been determined by electron diffraction combined with molecular mechanical calculations. For cis-3-hexene the data indicate the presence of the (+ac, +ac) and the (?ac, +ac) forms. In trans-3 -hexene three rotamers were observed, with an energy sequence E(+ac, +ac) ≈ E(?ac, +ac) < E(ac, sp). The refined rα0-structural parameters are: cis-3-hexene: C-H = 1.073 Å, CC = 1.330 Å, C(sp2)-C(sp3) = 1.505 Å, ∠CCH(in CH2) = 111.1°, ∠CCC = 111.4°, ∠(CC-C) = 129.1° trans-3-hexene: C-H = 1.078 Å, CC = 1.342 Å, C(sp2)-C(sp3) = 1.506 Å, ∠CCH(in CH2) = 109.3°, ∠CCC = 112.8, ∠CC—C = 124.1°The agreement between calculated and experimental geometries and vibrational amplitudes is good.  相似文献   

7.
Microwave studies (26.5–40 GHz) of further isotopic species of selenoketene formed by pyrolysis of 1,2,3-selenodiazole (12CH212C76,77,82Se, 12CH213C80Se and 13CH212C80Se) and by pyrolysis of 5-deuterio-1,2,3-selenodiazole (12CHD12C78,80Se) are reported. In conjunction with earlier results for 12CH12C78,80Se an rs structure has been derived with distances SeC (1.706 Å), CC (1.303 Å), CH (1.0908 A) and a HCH bond angle of 119.7°. The geometry of the CH2C moiety of selenoketene is closer to allene, CH2CCH2, than to ketene, CH2CO.  相似文献   

8.
The zerovalent diisopropyldibenzylideneacetone (dipdba, p-i-PrC6H4CHCHCOCHCH-p-i-PrC6H4) complexes M2(dipdba)3 (III, M = Pd; IV, M = Pt) have been prepared and their NMR spectra studied in solution. The 1H and 13C NMR spectra of III and IV show complex patterns which are consistent with the complexes having very asymmetric structures in solution. The metal atoms are π-bonded to the olefins and the frameworks are stereochemically rigid over the temperature range ?90°C to +60°C on the NMR time scale. The 1H spectra show the aryl groups to be rotating at +25°C but to be frozen out on the NMR time scale at low temperatures.  相似文献   

9.
The molecular structure of tetravinylsilane has been studied by gas-phase electron diffraction. The radial distribution curve suggests the absence of conformers having vinyl double bonds staggered with respect to the SiC4 skeleton. Of the eclipsed or approximately-eclipsed conformers, the one with S4 symmetry gives the best fit with experiment, although a small admixture of a C1 conformation cannot be ruled out. Least-squares refinement gave the following values for the independent structural parameters (lengths, ra basis; angles, rα basis): C-H = 1.118 ± 0.003 Å, CC = 1.355 ± 0.002 Å, Si-C = 1.855 ±0.002 Å, ∠SiCC = 124.0 ± 0.3°, ∠SiCH = 118.4 ± 1.0°, torsion angles CSiCC are 17.5 ± 0.6° from the eclipsed conformation. During the refinement the vibrational amplitudes u and perpendicular amplitude corrections K were held constant at calculated values. The CC bond length provides evidence of interaction between the vinyl π-bonds and the vacant d-orbitals of silicon.  相似文献   

10.
The molecular structure of gaseous 2-cyclopentene-1,4-dione has been studied by electron diffraction. The molecule is planar to within the experimental error. The results obtained for some of the more important parameters with estimated uncertainties of 2σ are r(C-H) = 1.093 Å (0.013), r(C0) = 1.208 Å (0.002), r(CC) = 1.341 Å (0.005), r(CH-CO) = 1.493 Å (0.005), r(CO-CH2) = 1.525 Å (0.005), ∠CC-C = 110.4° (0.3), ∠CH-CO = 124.9° (1.1), ∠CC-H. = 118.7° (5.8), ∠H-C-H = 113.2° (8.7) l(C-H) = 0.0853 A (0.0113), l(CO) = 0.0428 Å (0.0021), l(CC) = 0.0448 Å (0.0037) and l(C-C) = 0.0561 Å (0.0029). The structure is discussed in connection with the structures of related molecules.  相似文献   

11.
The molecular structure of gaseous dichloromaleic anhydride has been investigated by electron diffraction at a nozzle-tip temperature of 164–170°C. The molecule is planar to within experimental error, but small deviations from planarity corresponding to torsion up to about 10° around the carbon-carbon single bonds cannot be ruled out. Values of the more important rα distances and angles with estimated 2σ uncertainties are r(CO) = 1.188(2) Å, r(CC) = 1.332(5) Å, r(C-O) = 1.389(3) Å, r(C—C) = 1.495(3) Å, r(C—Cl) = 1.685(2) Å, ∠CC-Cl = 129.4(2)°, ∠C-CO = 128.5(4)° and ∠CC—C = 107.9(2)°. The shortening of the carbonyl bond relative to that in maleic anhydride itself is discussed in terms of a possible general effect of vicinal substitution.  相似文献   

12.
The crystal and molecular structures of c-Hex-DAB (c-hexyl-NC(H)C(H)N-c-hexyl; DAB = 1,4-diaza-1,3-butadiene) and of trans-[PdCl2(PPh3)(t-Bu-DAB)] are reported. Crystals of c-Hex-DAB are monoclinic with space group C2/c and cell constants: a = 24.70(1), b = 4.660(2), c = 12.268(3)Å, β = 107.66(4)°, Z = 4. The molecule has a flat E-s-trans-E structure with bond lengths of 1.258(3)Å for the CN double bond and 1.457(3)Å for the central CC′ bond. These bond lengths and the NC-C′ angle of 120.8(2)° indicate that the C- and N-atoms are purely sp2-hybridized and that there is little or no conjugation within the central DAB skeleton. Crystals of trans-[PdCl2(PPh3)(t-Bu-DAB)] are triclinic with space group P-1 and cell constants: a = 17.122(3), b = 18.279(3), c = 10.008(5)Å, α = 96.77(2), β = 95.29(3), γ = 109.79(2). Z = 4. The t-Bu-DAB ligand is coordinated to the metal via one lone pair only. In this 2e; σ-N coordination mode the E-s-trans-E conformation of the free DAB-ligand is still present and the bonding distances within the DAB-ligand are hardly affected. [CN: 1.261(10)Å; CC′: 1.479(10)Å (mean).] The PdN-, NC- and central CC′-bond lengths are compared with those found in other metal -R-DAB complexes.  相似文献   

13.
The structures of tetrachloro-p-benzoquinone and tetrachloro-o-benzoquinone (p- and o-chloranil) have been investigated by gas electron diffraction. The ring distances are slightly larger and the carbonyl bonds slightly smaller than in the corresponding unsubstituted quinones. The molecules are planar to within experimental error, but small deviations from planarity such as those found for the para compound in the crystal are completely compatible with the data. Values for the geometrical parameters (ra distances and bond angles) and for some of the more important amplitudes (l) with parenthesized uncertainties of 2σ including estimated systematic error and correlation effects are as follows. Tetrachloro-p-benzoquinone: D2h symmetry (assumed); r(CO) = 1.216 Å(4), r(CC) = 1.353 Å(6), r(C-C) = 1.492 Å(3), r(C-Cl) = 1.701 Å(3), ∠C-C-C = 117.1° (7), ∠CC-C1 = 122.7° (2), l(CO)= 0.037 Å(5), l(CC) = l(C-C) - 0.008 Å(assumed) = 0.049 Å(7), and l(C-Cl) = 0.054 Å(3). Tetrachloro-o-benzoquinone: C2v symmetry (assumed); r(CO) = 1.205 Å(5), r(CC) = 1.354 Å(9), r(Ccl-Ccl) = 1.478 Å(28), r(Co-Ccl) = 1.483 Å(24), r(Co-Co) = 1.526 Å(2), r(C-Cl)= 1.705 Å(3), <Co-CO = 121.0° (22), ∠C-C-C = 117.2° (9), ∠Cco, ClC-Cl = 118.9° (22), ∠Cccl, ClC-Cl = 122.2°(12), l(CO) = 0.039 Å(5), and l(Ccl-Ccl) = l(Co-Ccl) = l( Co-Co) = l(CC) + 0.060 Å(equalities assumed) = 0.055 Å(9). Vibrational'shortenings (shrinkages) of a few of the long non-bond distances have also been measured.  相似文献   

14.
Chloroacetyl chloride is studied by gas-phase electron diffraction at nozzle-tip tempera- tures of 18, 110 and 215°C. The molecules exist as a mixture of anti and gauche confor- mers with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ is found to be 0.770 (0.070), 0.673 (0.086) and 0.572 (0.086) at 18, 110 and 215°C, respectively. These values correspond to an energy difference with estimated standard deviation ΔEo = Eog -Eoa = 1.3 ± 0.4 kcal mol?1 and an entropy difference ΔSo = Sog -Soa = 0.7 ± 1.1 cal mol?1 K?1. Certain of the diffraction results permit the evaluation of an approximate torsional potential function of the form 2V = V1(1 - cos φ) + V2(1 - cos 2φ) + V3(1 - cos 3φ); the results are V1 = 1.19 ± 0.33, V2 = 0.56 ± 0.20 and V3 = 0.94 ± 0.12, all in kcal mol?1. The results for the distance (ra), angle (∠α) and r.m.s. amplitude parameters obtained at the three temperatures are entirely consistent. At 18°C the more important parameters are, with estimated uncertainties of 2σ, r(C-H) = 1.062(0.030) Å, r(CO) = 1.182(0.004) Å, r(C-C) = 1.521(0.009) Å. r(CO-Cl) = 1.772(0.016) Å, r(CH2-Cl) = 1.782(0.018) Å, ∠C-C-0 = 126.9(0.9)°, ∠CH2-CO-C1 = 110.0(0.7)°,∠CO-CH2-C1 = 112.9(1–7)°, ∠H-C-H = 109.5° (assumed), ∠φ (gauche torsion angle relative to 0° for the anti form) = 116.4(7.7)°, δ (r.m.s. amplitude of torsional vibration in the anti conformer) == 17.5(4.2)°.  相似文献   

15.
The successive reaction of (CO)6M with Na[NCR21] and [Et3O]BF4 yields (CO)5M[C(NCR21)OEt] (II: M = Cr; III: M = W; CR21 = C(C6H4Br-p)2 (a), CPh2 (b), C(C6H4OMe-p)2 (c), C(C6H4)2O (d), CBu2tt (e)). Hexacarbonyltungsten, (CO)6W, reacts with Na[NCPh2] and MeOSO2F to give (CO)5W[C(NCPh2) OMe] (IV). X-Ray analysis of IIe shows that: (1) the CNC fragment is almost linear (171.7°); (2) the two NC bond lengths are equal within experimental error; and (3) the O,C,Cr,N plane is perpendicular to the C(Me3),C,N,C(Me3) plane (90.0°). Therefore compounds II–IV are best described as 1-alkoxy-2-azaallenyl complexes.  相似文献   

16.
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (ΦΦ04 - 2(ΦΦ0)2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form).  相似文献   

17.
The molecular structure of COBr2 has been determined as follows by an analysis of electron diffraction intensity: rg(CO) = 1.178 ± 0.009 Å, rg(C-Br) = 1.923 ± 0.005 Å and θ°α(Br-C-Br) = 112.3 ± 0.4°. The uncertainties represent estimated limits of error. The observed systematic trends in the bond lengths and bond angles in carbonyl and thiocarbonyl halides are discussed.  相似文献   

18.
The structure of 1,1-difluoroethylene was determined, from gas phase electron diffraction data obtained independently in Leiden and Tokyo and the rotational constants of F2CCH2, F2CCHD and F2CCD2 derived from the microwave study by Chauffoureaux. The two electron diffraction data agreed without significant discrepancy. From a joint least squares analysis of the diffraction and microwave data, the following rg bond distances and rz bond angles were derived: CC = 1.340 ± 0.006 Å, C-F = 1.315 ± 0.003 Å, C-H = 1.091 ± 0.010 Å, ∠C-C-F = 124.7 ± 0.3°, ∠C-C-H = 119.0 ± 0.4°, where the uncertainties represent estimated limits of error.  相似文献   

19.
The structure and conformation of dichloroacetyl chloride have been determined by gas-phase electron diffraction at nozzle temperatures of 20 and 119°C. The molecules exist as a mixture of two conformers with the hydrogen and oxygen atoms syn and gauche to each other. The composition (mole fraction of syn form) of the vapor was found to be 0.72 ± 0.06 and 0.73 ± 0.12 at 20 and 119°C, respectively, corresponding to almost equal energy for the two forms. The results for the distance (rg), angle ∠α and r.m.s. amplitude (l) parameters obtained at the two temperatures are entirely consistent. At 20°C the more important parameters, with estimated uncertainties of 3σ are: r(C-H) = 1.062(0.049)Å, r(C0) = 1.189(0.003)Å, r(C-C) = 1.535(0.008)Å, r(CO-Cl) = 1.752 (0.009)Å, r(CHCl-Cl) = 1.771(0.004)Å, ∠C-CO = 123.3(1.3)°, ∠C-CO-Cl = 113.9 (5.9)°, ∠C-CHCl—Cl = 109.5(1.5)°, ∠C1-C-Cl = 111.7(0.5)°, ∠Cl-C-H = 108.0(1.5), φ1 (HCCO torsion angle in the syn conformer) = 0.0° (assumed), φ2 (HCCO torsion angle in the gauche conformer) = 138.2(5.1)°.  相似文献   

20.
The structure of silyi formate, HCOOSiH3, in the gas phase is determined by electron diffraction. The principal bond lengths and angles (ra) are r(Si-O) = 169.5 ± 0.3 pm, r(C-O) = 135.1 ± 0.6 pm, r(C  O) = 120.9 ± 0.7 pm, ∠(C-O-Si) = 116.8 ± 0.5°, ∠(OC-O) = 123.5 ± 0.5°. The silyi group is twisted by 21° away from the planar cis conformation but there is nevertheless a very short (286.5 ±1.0 pm) non-bonded Si ·O contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号