首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In order to determine isoflavone glycosides (calycosin‐7‐O‐β‐d ‐glucoside and formononetin‐7‐O‐β‐d ‐glucoside) and aglycones (calycosin and formononetin), a simple HPLC method with isocratic elution employing hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as a mobile phase additive was developed. Various factors affecting the retention of isoflavone glycosides and aglycones in the C18 reversed‐phase column, such as the nature of cyclodextrins, HP‐β‐CD concentration, and methanol concentration, were systematically studied. The results show that HP‐β‐CD, as a very effective mobile phase additive, can markedly reduce the retention of isoflavone glycosides and aglycones, and the decrease magnitudes of isoflavone aglycones are more than those of their glycosides. The role of HP‐β‐CD in the developed HPLC method is attributed to the formation of the inclusion complexes between isoflavone glycosides (or aglycones) and HP‐β‐CD. So, the apparent formation constants of the isoflavone glycosides (or aglycones)/HP‐β‐CD inclusion complexes also were investigated. Isoflavone glycosides (and aglycones) form the 1:1 inclusion complexes with HP‐β‐CD, and the isoflavone aglycones/HP‐β‐CD complexes are more stable than the isoflavone glycosides/HP‐β‐CD complexes. Finally, the optimized method was successfully applied for the determination of isoflavone glycosides and aglycones in Radix Astragali samples.  相似文献   

2.
A rapid, sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous quantification of the five main bioactive components, calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin in rat plasma after oral administration of Shenqi Wuwei chewable tablets. Plasma samples were extracted using solid‐phase extraction separated on a CEC18 column and detected by MS with an electrospray ionization interface in multiple‐reaction monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r > 0.995. The method had a lower limit of quantitation of 0.1, 0.02, 0.1, 1 and 0.1 ng/mL for calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin, respectively. Intra‐ and inter‐day precisions (relative standard deviation) for all analytes ranged from 0.97 to 7.63% and from 3.45 to 10.89%, respectively. This method was successfully applied to the pharmacokinetic study of the five compounds in rats after oral administration of Shenqi Wuwei chewable tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Formononetin‐7‐O‐β‐d ‐glucoside has been proved to have significant anti‐inflammatory effect. To evaluate its rat pharmacokinetics, a rapid, sensitive, and specific liquid chromatography–tandem mass spectrometry method has been developed and validated for the quantification of formononetin‐7‐O‐β‐d ‐glucoside and its main metabolite formononetin in rat plasma. Samples were pretreated using a simple protein precipitation and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water and acetonitrile both containing 0.1% formic acid. Both analytes were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. The assay showed wide linear dynamic ranges of both 0.10–100 ng/mL, with acceptable intra‐ and inter‐batch accuracy and precision. The lower limits of quantification were both 0.10 ng/mL using 50 μL of rat plasma for two analytes. The method has been successfully used to investigate the oral pharmacokinetic profiles of both analytes in rats. After oral administration of formononetin‐7‐O‐β‐d ‐glucoside at the dose of 50 mg/kg, it was rapidly absorbed in vivo and metabolized to its metabolite formononetin. The plasma concentration‐time profiles both showed double‐peak phenomena, which would be attributed to the strong enterohepatic circulation of formononetin‐7‐O‐β‐d ‐glucoside.  相似文献   

4.
The purpose of this study was to compare the effects of different chromatographic columns for the separation of seven flavonoids. Four different stationary phases are available, including bridged ethyl hybrid, BEH and the same hybrid phase modified with 2‐ethylpyridine, CSH fluorophenyl, and HSS C18 SB. The analytes included calycosin, genistein, medicarpin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, formononetin‐7‐O‐β‐d ‐glucoside, and liquiritigenin. The CSH fluorophenyl column was determined to be the most suitable and provided the fastest separation within 17 min using gradient elution with carbon dioxide as the mobile phase and methanol as the co‐solvent. Good peak shapes were obtained, and the values of the peak asymmetry were close to 1.0 for all of the flavonoids. The resolution was more than 1.41 for all of the separated peaks. Baseline separation on the optimal columns was achieved by changing the co‐solvent type and adjusting the temperature and pressure. Quantitative performance was evaluated under optimized conditions, and method validation was accomplished. The validation parameters, such as linearity, sensitivity, precision, and accuracy, were satisfactory. Good repeatability of both peak area (relative standard deviation <1.02%) and retention time (relative standard deviation <0.88%) was observed. The optimized chromatographic methods were successfully used for the determination of seven flavonoids in Radix astragali . The sensitivity was sufficient for the analysis of real samples.  相似文献   

5.
A rapid, sensitive and accurate UPLC‐MS/MS method was developed for the simultaneous quantification of components of Huangqi decoction (HQD), such as calycosin‐7‐O‐β‐d ‐glucoside, calycosin‐glucuronide, liquiritin, formononetin‐glucuronide, isoliquiritin, liquiritigenin, ononin, calycosin, isoliquiritigenin, formononetin, glycyrrhizic acid, astragaloside IV, cycloastragenol, and glycyrrhetinic acid, in rat plasma. After plasma samples were extracted by protein precipitation, chromatographic separation was performed with a C18 column, using a gradient of methanol and 0.05% acetic acid containing 4mm ammonium acetate as the mobile phase. Multiple reaction monitoring scanning was performed to quantify the analytes, and the electrospray ion source polarity was switched between positive and negative modes in a single run of 10 min. Method validation showed that specificity, linearity, accuracy, precision, extraction recovery, matrix effect and stability for 14 components met the requirements for their quantitation in biological samples. The established method was successfully applied to the pharmacokinetic study of multiple components in rats after intragastric administration of HQD. The results clarified the pharmacokinetic characteristics of multiple components found in HQD. This research provides useful information for understanding the relation between the chemical components of HQD and their therapeutic effects.  相似文献   

6.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   

7.
Anthraquinone glycosides, such as chrysophanol 1‐O‐β‐d‐ glucoside, chrysophanol 8‐O‐β‐d‐ glucoside, and physion 8‐O‐β‐d‐ glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above‐mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1‐O‐β‐d‐ glucoside and chrysophanol 8‐O‐β‐d‐ glucoside. This study demonstrated an efficient strategy based on preparative high‐performance liquid chromatography and high‐speed countercurrent chromatography for the separation of the above‐mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf.  相似文献   

8.
An efficient synthesis of 1,2,3,4,6‐penta‐O‐acetyl‐L ‐idopyranose 2 from 3,5‐O‐benzylidene‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose in five steps in 45% overall yield via hydroboration of enol ether, hydrolysis of L ‐idofuranosyl sugar and acetolysis of 1,6‐anhydro‐β‐L ‐idopyranose as key steps is described here.  相似文献   

9.
An off‐line two‐dimensional high‐speed counter‐current chromatography strategy combined with the wavelength switching technique and extrusion elution mode was successfully developed and applied to the isolation of polar antioxidants from Abelmoschus esculentus (L).Moench. Target‐guided by the result of 2,2‐diphenyl‐1‐picrylhydrazyl screening assay, four antioxidants were obtained with purities over 90% through orthogonal high‐speed counter‐current chromatography separation. UV spectroscopy, mass spectrometry and 1H NMR spectroscopy were employed to identify their structures, which were assigned as l ‐tryptophan, quercetin‐3‐O‐sophoroside, 5,7,3′,4′‐tetrahydroxyflavonol‐3‐O‐[β‐d ‐rhamnopyranosil‐(1→2)]‐β‐d ‐glucopyranoside, and quercetin‐3‐O‐glucoside. Each monomer exhibited significant antioxidant activity. The results demonstrated that proposed method could be an effective approach to isolate bioactive compounds from complex natural products.  相似文献   

10.
As an aid for structure elucidation of new steviol glycosides, reversed‐phase C18 high‐performance liquid chromatography method was developed with several previously characterized diterpene glycosides, to identify known and detect novel aglycone‐C13 oligosaccharide moieties and indirectly identify C‐19 interlinkages. Elution order of several diterpene glycosides and their aglycone‐C13 oligosaccharide substituted with different sugar arrangements were also summarized. Comparison of the retention time of a product obtained after alkaline hydrolysis with the aglycone‐C‐13 portions of known compounds reported herein allowed us to deduce the exact positions of the sugars in the C‐13 oligosaccharide portion. The elution position of several steviol glycosides with an ent‐kaurene skeleton was helpful to describe an identification key. Two previously uncharacterized diterpene glycosides together with two known compounds were isolated from a commercial Stevia rebaudiana leaf extract. One was found to be 13‐[(2‐O‐β‐d ‐xylopyranosyl3‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl)oxy]ent‐kaur‐16‐en‐19‐oic acid‐(2‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl) ester (rebaudioside V), whereas the other was determined to be 13‐[(2‐O‐β‐d ‐xylopyranosyl3‐O‐β‐d ‐glucopyranosyl‐β‐d‐ glucopyranosyl)oxy]ent‐kaur‐16‐en‐19‐oic acid‐(2‐O‐α‐l ‐rhamnopyranosyl‐3‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl) ester (rebaudioside W). Previously reported compounds were isolated in gram quantities and identified as rebaudioside J and rebaudioside H. In addition, a C‐19 sugar‐free derivative was also prepared from rebaudioside H to afford rebaudioside H1. Chemical structures were partially determined by the high‐performance liquid chromatography method and unambiguously characterized by using one‐dimensional and two‐dimensional nuclear magnetic resonance experiments.  相似文献   

11.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

12.
Nine glycosides ( 1–9 ) were characterized from the n‐butanol‐soluble fraction of the ethanolic extract of the leaves of Sageretia thea by the general approach. Among these, Compounds 6 and 7 were identified as a mixture. Application of HPLC‐SPE‐NMR in two selected fractions led to the separation of this mixture and the characterization of three additional minors ( 10–12 ). Among these, 7‐O‐methylmyricetin 3‐O‐α‐l ‐arabinofuranoside ( 8 ) is a new natural product and eight compounds, i.e. glucofragulin A ( 1 ), quercetin‐3‐O‐α‐l ‐arabinopyranoside ( 5 ), 3‐O‐β‐d ‐galactopyranoside ( 6 ), 3‐O‐β‐d ‐glucopyranoside ( 7 ), and 3‐O‐α‐l ‐arabinofuranoside ( 11 ), myricetin‐3‐O‐α‐l ‐arabinofuranoside ( 9 ) and 3‐O‐β‐d‐glucopyranoside ( 10 ), and quercetrin ( 12 ), are found for the first time from the title plant.  相似文献   

13.
The purpose of this study was to simultaneously investigate the pharmacokinetics of five bioactive compounds in rat plasma after oral administration of Buyang Huanwu decoction (BYHWD) using high‐performance liquid chromatography coupled with mass spectrometry (HPLC‐MS). The separations were performed on a Thermo Hypersil Gold C18 analytical column (50 × 2.1 mm, 3 µm) with the column temperature kept at 30°C. The quantitative analysis was performed using a quadrupole mass spectrometer detector operated under selected ion monitoring mode. A linear gradient elution of A (0.1% formic acid solution) and B (100% acetonitrile) was used at a flow rate of 0.2 mL/min. The method was validated within the concentration ranges 1.8–450, 6.0–1500, 2.0–500, 1.2–300 and 1.2–150 ng/mL for paeoniflorin, calycosin‐7‐O‐β‐d ‐glucoside, ononin, calycosin and formononetin, respectively. The calibration curves were linear with correlation coefficients > 0.99. The lower limits of quantitations were < 6.0 ng/mL. The method was further applied to assess the pharmacokinetics of the five bioactive constituents of BYHWD in rat plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Four new ursane‐type saponins, monepalosides C–F, together with a known saponin, mazusaponin II, were isolated from Morina nepalensis var. alba Hand.‐Mazz. Their structures were determined to be 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside C, 1 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside D, 2 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[beta;‐D ‐glucopyranosy‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside E, 3 ) and 3‐O‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranoside (monepaloside F, 4 ) on the basis of chemical and spectroscopic evidence. 2D NMR techniques, including 1H–1H COSY, HMQC, 2D HMQC‐TOCSY, HMBC and ROESY, and selective excitation experiments, including SELTOCSY and SELNOESY, were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

16.
High‐performance countercurrent chromatography (HPCCC) with electrospray light‐scattering detection was applied for the first time to isolate a spirostanol and a novel furostanol saponin from Liriope platyphylla. Due to the large differences in KD values between the two compounds, a two‐step HPCCC method was applied in this study. The primary HPCCC employed methylene chloride/methanol/isopropanol/water (9:6:1:4 v/v, 4 mL/min, normal‐phase mode) conditions to yield a spirostanol saponin ( 1 ). After the primary HPCCC run, the solute retained in the stationary phase (SP extract) in HPCCC column was recovered and subjected to the second HPCCC on the n‐hexane/n‐butanol/water system (1:9:10 v/v, 5 mL/min, reversed‐phase mode) to yield a novel furostanol saponin ( 2 ). The isolated spirostanol saponin was determined to be 25(S)‐ruscogenin 1‐O‐β‐d ‐glucopyranosyl (1→2)‐[β‐d ‐xylopyranosyl (1→3)]‐β‐d ‐fucopyranoside (spicatoside A), and the novel furostanol saponin was elucidated to be 26‐O‐β‐d ‐glucopyranosyl‐25(S)‐furost‐5(6)‐ene‐1β‐3β‐22α‐26‐tetraol‐1‐O‐β‐d ‐glucopyranosyl (1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐fucopyranoside (spicatoside D).  相似文献   

17.
From the whole plant of Morina nepalensis var. alba Hand.‐Mazz., two new acylated flavonoid glycosides ( 1 and 2 ), together with four known flavonoid glycosides ( 3–6 ), were isolated. Their structures were determined to be quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (monepalin A, 1 ), quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranoside (monepalin B, 2 ), quercetin 3‐O‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (rumarin, 3 ), quercetin 3‐O‐β‐D ‐galactopyranoside ( 4 ), quercetin 3‐O‐β‐D ‐glucopyranoside ( 5 ) and apigenin 4O‐β‐D ‐glucopyranoside ( 6 ). Their structures were determined on the basis of chemical and spectroscopic evidence. Complete assignments of the 1H and 13C NMR spectra of all compounds were achieved from the 2D NMR spectra, including H–H COSY, HMQC, HMBC and 2D HMQC‐TOCSY spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Three new acacic acid derivatives, named coriariosides C, D, and E ( 1–3 ) were isolated from the roots of Albizia coriaria. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and mass spectrometry as 3‐O‐[β‐D ‐xylopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl‐(1 → 6)‐2‐(acetamido)‐2‐deoxy‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐ 6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐{β‐D ‐fucopyranosyl‐(1 → 6)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐α‐L ‐rhamno pyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 2 ), and 3‐O‐[β‐D ‐fucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl)‐β‐D ‐quinovopyranosyl]octa‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐glucopyranosyl ester ( 3 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, the changes in isoflavone levels and the expression of genes involved in their biosynthesis were studied in two Astragalus by UPLC ‐MS and real‐time PCR after 10 days of UV ‐B treatment (λ max = 313 nm, 804 J m−2). Isoflavones were significantly induced by UV ‐B irradiation. The influence might be activated by the regulation of these target genes. Our results indicate that (1) the resistance of Astragalus membranaceus might not be as good as Astragalus mongholicus in the enhanced UV ‐B radiation environment; (2) the enhanced accumulation of calycosin and calycosin‐7‐glucoside with UV ‐B treatment in roots of A. mongholicus might be derived from formononetin which is synthesized in the leaves; (3) the glycosylation process could be stimulated and activated by the enhanced UV ‐B radiation in both A. mongholicus and A. membranaceus . In other words, glycosylation of isoflavones might play a crucial role for two Astragalus plants in response to UV ‐B stress. Overall, this study offered a feasible elicitation strategy to understand the accumulation pattern of isoflavone in A. mongholicus and A. membranaceus , and also provided a reference for the changes in isoflavone levels of Astragalus in UV ‐B enhanced environment in the future.  相似文献   

20.
A new sodium salt of anthraquinone named sodium emodin‐1‐O‐β‐gentiobioside, together with nine known compounds, viz. rubrofusarin‐6‐O‐β‐D ‐gentiobioside, chrysophanol‐1‐O‐β‐D ‐glucopyranosyl‐(1–3)‐β‐D ‐glucopyranosyl‐(1–6)‐β‐D ‐glucopyranoside, obtusifolin‐2‐O‐β‐D ‐glucopyranoside, aurantio‐obtusin‐6‐O‐β‐D ‐glucopyranoside, physcion‐8‐O‐β‐D ‐glucopyranoside, 1‐hydroxyl‐2‐acetyl‐3,8‐dimethoxy‐6‐O‐β‐D ‐apiofuranosyl‐(1–2)‐β‐D ‐glucosylnaphthalene, toralactone‐9‐O‐β‐D ‐gentiobioside, aurantio‐obtusin, rubrofusarin‐6‐O‐β‐D ‐apiofuranosyl‐(1–6)‐O‐β‐D ‐glucopyranoside, was isolated from the seeds of Cassia obtusifolia and its structure was elucidated by 1H and 13C NMR technique assisted with acid–alkali titration. The change of chemical shifts of sodium emodin‐1‐O‐β‐gentiobioside before and after acid–alkali titration was also characterized. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号