首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A Nickel Dimethylglyoxime (Ni‐DMG) compound was dispersed in polymethyl methacrylate (PMMA) films at different concentrations. PMMA was synthesized by a solution polymerization technique. These films were irradiated with 120 MeV Ni10+ ions at the fluences of 1×1011 and 1×1012 ions/cm2. The radiation induced changes in dielectric properties and average surface roughness were investigated by using an LCR meter in the frequency range 50 Hz to 10 MHz and atomic force microscopy (AFM), respectively. The electrical properties of irradiated films are found to increase with the fluence and also with the concentration of Ni‐DMG. From the analysis of frequency, f, dependence of dielectric constant, ?, it has been found that the dielectric response in both pristine and irradiated samples obey the Universal law given by ? α f n?1. The dielectric constant/loss is observed to change significantly due to the irradiation. This suggests that ion beam irradiation promotes (i) the metal to polymer bonding (ii) convert the polymeric structure in to hydrogen depleted carbon network due to the emission of hydrogen gas and/or other volatile gases. Atomic force microscopy (AFM) shows that the average surface roughness and surface morphology of irradiated films are observed to change.  相似文献   

2.
Polymer composites with different concentrations of organometallics (ferric oxalate) dispersed PMMA were prepared. PMMA was synthesized by solution polymerization technique. These films were irradiated with 120 MeV Ni10+ ions in the fluence range 1011-5 × 1012 ions/cm2. The radiation induced modifications in dielectric properties, microhardness, structural changes and surface morphology of polymer composite films have been investigated at different concentrations of filler and ion-fluences. It was observed that electrical conductivity and hardness of the films increase with the concentration of the filler and also with the fluence. The dielectric constant (?) obeys the Universal law given by ?αfn−1. The dielectric constant/loss is observed to change significantly due to irradiation. This suggests that ion beam irradiation promotes the metal to polymer bonding and convert polymeric structure into hydrogen depleted carbon network. This makes the composites more conductive and harder. Surface morphology of the films has been studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average surface roughness is observed to increase after irradiation as revealed by AFM studies. The SEM images show the blisters type of phenomenon on the surface due to ion beam irradiation.  相似文献   

3.
A facile and cost-effective method to prepare poly(methyl methacrylate) (PMMA)/graphene oxide (GO) nanocomposites was developed by in situ polymerization. By using thermal-initiated and GO-initiated polymerization of methyl methacrylate (MMA), no extra radical initiator was added during the reaction. Without any pre-functionalization of GO, PMMA chains were covalently bonded to its surface, which was confirmed by Fourier-transform infrared, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy investigations. TGA analysis showed that the mass ratio of grafted PMMA and GO was as high as 1.7. Transmission electron microscopy and X-ray powder diffraction investigations demonstrated that the grafting of PMMA chains to GO surfaces resulted in homogeneous dispersion of GO sheets in PMMA matrix, which led to a commendable performance on its mechanical and thermal properties. Dynamic mechanical analysis showed that, at a loading level of just 0.5 wt% for the nanocomposites, the storage modulus of the nanocomposites was improved 14%, and the glass transition temperature was increased 12°C in comparison with that of neat PMMA. Thermogravimetric analysis showed that the onset degradation temperature of the nanocomposites was increased 13°C with a GO content of 0.25 wt%.  相似文献   

4.
New graphene oxide (GO)‐tethered–CoII phthalocyanine complex [CoPc–GO] was synthesized by a stepwise procedure and demonstrated to be an efficient, cost‐effective and recyclable photocatalyst for the reduction of carbon dioxide to produce methanol as the main product. The developed GO‐immobilized CoPc was characterized by X‐ray diffraction (XRD), FTIR, XPS, Raman, diffusion reflection UV/Vis spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP‐AES), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). FTIR, XPS, Raman, UV/Vis and ICP‐AES along with elemental analysis data showed that CoII–Pc complex was successfully grafted on GO. The prepared catalyst was used for the photocatalytic reduction of carbon dioxide by using water as a solvent and triethylamine as the sacrificial donor. Methanol was obtained as the major reaction product along with the formation of minor amount of CO (0.82 %). It was found that GO‐grafted CoPc exhibited higher photocatalytic activity than homogeneous CoPc, as well as GO, and showed good recoverability without significant leaching during the reaction. Quantitative determination of methanol was done by GC flame‐ionization detector (FID), and verification of product was done by NMR spectroscopy. The yield of methanol after 48 h of reaction by using GO–CoPc catalyst in the presence of sacrificial donor triethylamine was found to be 3781.8881 μmol g?1 cat., and the conversion rate was found to be 78.7893 μmol g?1cat. h?1. After the photoreduction experiment, the catalyst was easily recovered by filtration and reused for the subsequent recycling experiment without significant change in the catalytic efficiency.  相似文献   

5.
The microstructure of acrylonitrile-methyl acrylate copolymers prepared by the solution polymerization using 2,2′-azobisisobutyronitrile (AIBN) as free radical initiator was investigated by two-dimensional NMR techniques. 2D-heteronuclear single quantum correlation (HSQC) and the total correlation spectroscopy (TOCSY) have been utilized to resolve the complex 1H NMR spectrum and to establish the compositional and configurational sequences of acrylonitrile-methyl acrylate copolymers. 2D HSQC and TOCSY showed compositional and configurational sensitivity of methine protons of A and M units upto the triad level. Heteronuclear multiple-bond correlation (HMBC) spectroscopy has been used to study carbon (carbonyl/nitrile)-proton coupling. The carbonyl and nitrile carbons showed compositional sensitivity upto the triad level. The values of reactivity ratios were determined by Kelen-Tudos (KT) and non-linear error in variable method (RREVM).  相似文献   

6.
The study presents a novel paracetamol (PA) sensor based on Pd nanoparticles (PdNPs) deposited on carboxylated graphene oxide (GO?COOH) and nafion (Nf) modified glassy carbon electrode (GCE). The morphologies of the as prepared composites were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR). The experimental results demonstrated that Nf/GO?COOPd displayed excellent electrocatalytic response to the oxidation PA. The linear range was 0.04–800 μM for PA with limit of detection of 0.012 μM and excellent sensitivity of 232.89 μA mM?1 cm?2. By considering the excellent performance of Nf/GO?COOPd composite such as wider linear range, lower detection, better selectivity, repeatability, reproducibility, and storage stability, the prepared composite, especially GO?COOH support, with satisfactory electrocatalytic properties was a promising material for the modification of electrode material in electrochemical sensor and biosensor field.  相似文献   

7.
Graphene oxide (GO) is used as a stabilizer in the Pickering emulsion polymerization of methyl methacrylate (MMA) to prepare PMMA/GO nanocomposites. Transmission electron microscope studies of the emulsion polymerization products showed that the average diameter of nanocomposite particles was about 150 nm, the transparent GO flakes covered the surface of the particles, and were well dispersed in polymer matrix. The influence of GO on the thermal stability of PMMA was investigated by thermogravimetry analysis and differential scanning calorimetry. The results showed that the thermal stability and the glass transition temperature (T g) of PMMA/GO nanocomposites were improved obviously compared with PMMA. The apparent activation energy (E a) for the degradation process of PMMA/GO nanocomposites was evaluated by Kissinger method, which indicated that their E a s were much higher than those of PMMA both in nitrogen and air atmosphere.  相似文献   

8.
A highly sensitive and selective chemical sensor was prepared based on metallic copper‐copper oxides and zinc oxide decorated graphene oxide modified glassy carbon electrode (Cu?Zn/GO/GCE) through an easily electrochemical method for the quantification of bisphenol A (BPA). The composite electrode was characterized via scanning electron microscopy (SEM), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of BPA in Britton‐Robinson (BR) buffer solution (pH 7.1) was examined using cyclic voltammetry (CV). Under optimized conditions, the square wave voltammetry (SWV) response of Cu?Zn/GO/GCE towards BPA indicates two linear relationships within concentrations (3.0 nmol L?1?0.1 μmol L?1 and 0.35 μmol L?1?20.0 μmol L?) and has a low detection limit (0.88 nmol L?1). The proposed electrochemical sensor based on Cu?Zn/GO/GCE is both time and cost effective, has good reproducibility, high selectivity as well as stability for BPA determination. The developed composite electrode was used to detect BPA in various samples including baby feeding bottle, pacifier, water bottle and food storage container and satisfactory results were obtained with high recoveries.  相似文献   

9.
Poly(methyl methacrylate) (PMMA) was anchored to multiporous poly(vinylidine fluoride) (PVDF) surface via electron beam preirradiation grafting technique to prepare PVDF/PMMA brushes. The conformation of the PVDF/PMMA brushes was verified through Attenuated total reflection‐Fourier transform infra red spectroscopy (ATR‐FTIR), energy dispersive X‐ray spectroscopy (EDX), and scanning electron microscopy (SEM). Thermal stability of PVDF/PMMA brushes was characterized by thermo gravimetric analysis (TGA). The degradation of PVDF/PMMA brushes showed a two‐step pattern. PVDF/PMMA brushes membrane could be used as polymer electrolyte in lithium‐ion rechargeable batteries after it was activated by uptaking 1 M LiPF6/EC‐DMC (ethylene carbonate/dimethyl carbonate; EC:DMC = 1:1 by volume) electrolyte solution. The activated membrane showed high ionic conductivity, 6.1 × 10?3 S cm?1 at room temperature, and a good electrochemical stability up to 5.0 V. The excellent performances of multiporous PVDF‐g‐PMMA membranes suggest that they are suitable for application in high‐performance lithium‐ion batteries. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 751–758, 2008  相似文献   

10.
Polycarbonate/polystyrene composites films were irradiated by 55 MeV Carbon ion beam with fluence ranging from 1 × 1011 to 1 × 1013 ions/cm2. The polymer composites films were prepared by solution mixing method. The effects of ion beam on structural, optical and surface morphology of PC/PS composites films were investigated by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FT-IR) and Optical Microscope. The XRD pattern shows the average crystallite size, percentage of crystallinity and inter-chain separation, which decreases with increase in ion fluences. UV-vis spectra show that the energy band gap and transmittance decreases while number of carbon atoms increases with fluences. The FT-IR spectra evidenced very small change in cross linking and chain scissoring at high ion fluences, while the optical microscopy shows a color change with ion fluence.  相似文献   

11.
Proton beam writing (PBW) on polymethyl methacrylate (PMMA) followed by embedding of biosynthesized silver nanoparticles (AgNPs) was investigated. This is the first demonstration of the use of 3 MV Tandetron accelerator at iThemba LABS for fabricating patterns using PBW technique. The irradiation of PMMA was carried out using 3.0-MeV proton beam focused down to micrometer spot size. The fluence of protons was counted as electrical charge per unit monitored by exposure time, beam current, and irradiated area. As expected, the PMMA behaved as a positive resist because of chain scissioning induced from the interaction with proton beam. Morphological characterization using scanning electron microscope (SEM) revealed fabrication of square-like patterns, and atomic force microscopy (AFM) provided the possibility of observing the presence of AgNPs that stood out of the PMMA matrix.  相似文献   

12.
Extracorporeal filter cartridges, filled with an activated carbon bead (ACB) adsorbent, have been used for removal of overdosed cancer drugs from the blood. Coatings on adsorbent matrices, poly(methyl methacrylate) (PMMA)/activated carbon bead and PMMA/chitosan/heparin/ACB composites, were tested to improve their biocompatibility and blood compatibility. PMMA coating on ACBs was accomplished in a straightforward manner using a PMMA solution in ethyl acetate. A one-step hybrid coating of ACBs with PMMA-anticoagulant heparin required the use of acetone and water co-solvents. Multilayer coatings with three components, PMMA, chitosan, and heparin, involved three steps: PMMA was first coated on ACBs; chitosan was then coated on the PMMA-coated surface; and finally, heparin was covalently attached to the chitosan coating. Surface morphologies were studied by scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the -SO(3)(-) group. Adsorption, of a chemotherapy drug (doxorubicin) from both water and phosphate-buffered saline, by the coated ACBs was examined. The adsorption isotherm curves were fitted using the Freundlich model. The current adsorption system might find potential applications in the removal of high-dose regional chemotherapy drugs while maintaining high efficiency, biocompatibility, and blood compatibility.  相似文献   

13.
A convenient method for the production of graphene is developed using the electrochemical reduction of graphite oxide (GO) in solution without assembling it onto the electrode. The samples were examined by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results show that the number of oxygen functional groups can be significantly decreased. The electrochemical capacitance of the prepared graphene after 8 h of reduction is 158.5 F g?1 at 0.5 A g?1, much higher than that of GO and carbon nanotubes. The mechanism for this reaction is also proposed in this paper.  相似文献   

14.
Co3O4/graphene oxide (GO) nanocomposites were successfully prepared by a depositing‐decomposition method. The as‐prepared samples were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Cyclic voltammetry (CV) was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with Co3O4/GO nanocomposite towards glucose. Compared with the Co3O4/GCE, the Co3O4/GO/GCE exihibits higher electrocatalytic activity due to the synergistic effects of electrocatalytic ability of Co3O4 and large surface of GO. The Co3O4/GO/GCE was applied for glucose detection in alkaline solution. The linear current response range of glucose on Co3O4/GO/GCE covered the range from 9 × 10?5 to 6.03 × 10?3 M, with a detection limit of 5.2 × 10?7 M (S/N = 3).  相似文献   

15.
A method is described for the determination of carbon in iron, chromium, nickel, and molybdenum, using the12C (γ, n)11C reaction. The samples are irradiated with the bremstrahlung from a 35 MeV electron beam impinging a platinum target. Two apparatuses for the separation of carbon are described. The11C* activity of the sample is compared with the activities of two graphite standards, counting the positron annihilation gamma rays. The limit of detection is 0.02 μg/g of carbon in high-purity iron.   相似文献   

16.
Hydrogenated amorphous carbon (a-C:H) films consisting of a top a-C:H layer, a gradient transient a-C:H:Ti layer, and a bottom Ti layer were irradiated by 1.1-MeV C+ ions, resulting in a maximum displacement damage of 1.0 dpa and a projected range inside the Ti layer. Time-of-flight secondary ion mass spectrometry, electron energy loss spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analyses were performed to investigate the compositional and structural transitions of a-C:H films after self-ion irradiation. The results revealed that C+ ions passing through the top a-C:H layer induced C–H fracture and hydrogen diffusion in this layer and then resulted in atomic intermixing in the multilayered adhesion interlayer. After local energy deposition of C+ ions, the initial sharp interfaces in the a-C:H:Ti layer became ambiguous due to interfacial mixing. In addition, titanium carbides formed in the Ti layer, with a gradual phase transition from TiCx to TiC with a diffusion depth of 200 nm. The broken compositional gradients of the adhesion interlayer resulted in a significant decrease in the adhesion strength of the films, which eventually resulted in degraded antiwear properties of the irradiated film in dry sliding tribotests.  相似文献   

17.
For poly(methyl methacrylate) (PMMA) as a representative of amorphous thermoplastic polymers, the milling effects, and the chemical changes due to ion bombardment with a focused ion beam (FIB) at normal incidence are studied with scanning force microscopy (SFM), scanning electron microscopy (SEM)/energy dispersive X‐ray (EDX), and infrared (IR) spectroscopy for varying conditions of Ga+ treatment, including the effect of partial water pressure. Stopping and Range of Ions in Matter (SRIM) simulation results for 30 keV Ga+ at normal incidence show that the zone of primary ion–polymer interaction extends ca 100 nm into the PMMA. Accordingly, this interaction region is much wider than the original beam diameter. The width of the region where the recoiled ions interact strongly with the polymer chains is larger. Secondary processes, such as fragment diffusion and phonon transport, are expected to extend even farther into the polymer. SEM and SFM reveal distinct topologies of areas milled without or in presence of water vapour. Water vapour–assisted FIB milling produces more roughness and defects. The infrared attenuated total reflection spectroscopy (IR‐ATR) spectra indicate that ion milling in PMMA damages methacrylate side groups in particular. In contrary to metals, an increase in the degree of milling is found when the beam spot overlap parameter increases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Composites of graphene (oxide) (GO) and first-row transition-metal cations (Co2+, Ni2+, Mn2+, Fe2+) are prepared by mixing GO and aqueous metal salt solutions. The amount of metal cation bound to GO nanosheets is calculated by using inductively coupled plasma mass spectrometry (ICP-MS) and the possible binding sites of the metals are investigated by means of attenuated total reflectance infrared (ATR-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. Electrodes loaded with the metal/GO composites are prepared by a simple drop-casting technique without any binders or conductive additives. The effect of electrochemical reduction on the structure of the composite electrodes is investigated by Raman spectroscopy, XPS, X-ray diffraction (XRD) analysis, and field emission scanning electron microscopy (FESEM). A detailed electrochemical characterization is performed for the utilization of the composite electrodes for electrochemical capacitors and possible oxygen reduction reaction electrocatalysts by cyclic voltammetry (CV) and rotating disk electrode measurements. The highest areal capacitance is achieved with the as-deposited Fe/GO composite (38.7 mF cm−2 at 20 mV s−1). In the cyclic stability measurements, rCo/GO, rNi/GO, rMn/GO, and rFe/GO exhibit a capacitance retention of 44, 1.1, 73, and 87 % after 3000 cycles of CV at 100 mV s−1, respectively.  相似文献   

19.
Composites of poly(methyl methacrylate) (PMMA) with multi-walled carbon nanotubes (MWCNT) of varying aspect ratio and carboxylic acid functionality were prepared using melt mixing. The extent of dispersion and distribution of the MWCNTs in the PMMA matrix was investigated using a combination of high-resolution transmission electron microscopy (HRTEM), wide-angle X-ray diffraction (XRD) and Raman spectroscopy. The electrical resistivity and oscillatory shear rheological properties of the composites were measured as a function of MWCNT geometry, functionality, and concentration. The fundamental ballistic conductance of the pristine free-standing MWCNTs was investigated using a mechanically controlled break-junction method. The electrical conductivity of PMMA was enhanced by up to 11 orders of magnitude for MWCNT concentrations below 0.5 wt.%. MWCNTs having higher aspect ratio, above 500, or functionalized with carboxylic acid groups readily formed rheological percolated networks with thresholds, determined from a power law relationship, of 1.52 and 2.06 wt.%, respectively. The onset of pseudo-solid-like behaviour and network formation is observed as G′, η∗, and tan δ−1 are independent of frequency as MWCNT loading increased. Sufficiently long and/or functionalized tubes are required to physically bridge or provide interfacial interactions with PMMA to alter polymer chain dynamics. Carboxylic acid functionalization disrupts the crystalline order of MWCNTs due to a loss of π-conjugation and electron de-localisation of sp2 C-C bonds resulting in non-ballistic electron transport in these tubes, irrespective of how highly dispersed they are in the PMMA matrix.  相似文献   

20.
A novel electrochemical platform was designed for the determination of Azithromycin (Azi), a widely used macrolide antibiotic, by combining the hydrophilic properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable MWCNTs aqueous dispersion has been prepared using GO nano-sheets as surfactant and the obtained GO-MWCNTs nanohybrid was characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and electrochemical impedance spectroscopy, which confirmed that GO nano-sheets were attached onto the wall of MWCNTs to form a necklace-like structure. Electrochemical results obviously reveal that the oxidation peak currents of Azi obtained at the GC electrode modified with GO-MWCNTs hybrid are much higher than those at the MWCNTs/GC, GO/GC and bare GC electrodes. Under optimized conditions, the anodic peak current was linear to the concentration of Azi in the range from 0.1 to 10 μM with the detection limit of 0.07 μM. To further validate its possible application, the proposed method was successfully used for the determination of Azi in pharmaceutical formulations with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号