首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of proflavine with herring sperm DNA has been investigated by cyclic voltammetry and UV-Vis spectroscopy as well as viscosity measurements. Shifts in the peak potentials in cyclic voltammetry, spectral changes in UV absorption titration, an increase in viscosity of DNA and the results of the effect of ionic strength on the binding constant strongly support the intercalation of proflavine into the DNA double helix. The binding constant for the interaction between proflavine and DNA was K = 2.32 (+/- 0.41) x 10(4) M(-1) and the binding site size was 2.07 (+/- 0.1) base pairs, estimated in voltammetric measurements. The value of the binding site size was determined to be closer to that expected for a planar intercalating agent. The standard Gibbs free-energy change is ca. -24.90 kJ/mol at 25 degrees C, indicating the spontaneity of the binding interaction. The binding constant determined by UV absorption measurements was K = 2.20 (+/- 0.48) x 10(4) M(-1), which is very close to the value determined by cyclic voltammetry assuming that the binding equilibrium is static.  相似文献   

2.
Lin XH  Wan HY  Zhang YF  Chen JH 《Talanta》2008,74(4):944-950
The interaction of Aloe-emodin (AE) with salmon sperm DNA in 0.1M Tris-HCl buffer (pH 4.4) and at the DNA-modified glassy carbon electrode (GCE) was systemically studied with voltammetry and ultraviolet-visible (UV-vis) spectroscopy. AE had excellent electrochemical activity on the GCE with a couple of redox peaks. We propose that AE can intercalate into DNA strands forming a nonelectroactive complex, which results in the decrease of the reduction peak current of AE. The Langmuir adsorption constants of AE at ss- and dsDNA/GCE were (2.1+/-0.4)x10(5) and (2.7+/-0.2)x10(5)M(-1), respectively. The difference between AE at ss- and dsDNA has been used for the preparation of a sequence-specific DNA electrochemical biosensor for detection of PML-RARalpha fusion gene in acute promyelocytic leukemia (APL) with a detection limit of 6.7x10(-8)M and a linear range from 1.5x10(-8) to 1.5x10(-7)M. The selectivity of ssDNA-modified electrode was also described.  相似文献   

3.
This review reports the effects of several drugs such as AZT (anti-AIDS), cis-Pt (antitumor), aspirin (anti-inflammatory) and vitamin C (antioxidant) on the stability and conformation of Na,K-ATPase in vitro. Drug-enzyme binding was found to be via H-bonding to the polypeptide CO and C-N groups with two binding constants K(1(AZT))=5.30 (+/-2.1)x10(5)M(-1) and K(2(AZT))=9.80 (+/-2.9)x10(3)M(-1) for AZT and one binding constant K(cis)(-Pt)=1.93 (+/-1.2)x10(4)M(-1) for cis-Pt, K(aspirin)=6.45 (+/-2.5)x10(3)M(-1) and K(ascorbate)=1.04 (+/-0.5)x10(4)M(-1) for aspirin and ascorbic acid. The enzyme secondary structure was altered with major increase of alpha-helix from 19.9% (free protein) to 22-26% and reduction of beta-sheet from 25.6% (free protein) to 17-23% upon drug complexation indicating a partial stabilization of protein conformation. The order of induced stability is AZT>cis-Pt>ascorbate>aspirin.  相似文献   

4.
In the present study a chitosan/ionic liquid modified pencil graphite electrode (CHIT‐IL‐PGEs) was developed for the first time for enhanced electrochemical monitoring of nucleic acid, and the interaction of the anticancer drug Mitomycin C (MC) and calf thymus double stranded DNA (dsDNA) by measuring the oxidation signals of MC and guanine in the same voltammetric scale. Differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to evaluate the performance of the CHIT‐IL based biosensor on electrochemical monitoring of DNA, and drug‐DNA interaction. The experimental parameters, IL, dsDNA and MC concentration and the interaction time were then optimized.  相似文献   

5.
In this work, the complex cadmium(II)-morin was synthesized and its interaction with double-stranded salmon sperm DNA was studied by electrochemical methods on glassy carbon electrode (GCE). It was shown that Cd(II)-Morin with high electrochemical activity can intercalate into the double-helix DNA, and the binding stoichiometry and equilibrium dissociation constant according to the Hill model for cooperative binding were calculated to be 1.761 and 2.5 x 10(-5) M, respectively. Using Cd(II)-Morin as a novel hybridization indicator, the hybridization between the probe and its complementary and mismatched sequence was investigated by differential pulse voltammetry (DPV), which was to access the selectivity of the developed electrochemical DNA biosensor. The complementary target ssDNA could be quantified over the range from 2.69 x 10(-8) M to 9.16 x 10(-7) M with a linear correlation of 0.9971 and a detection limit of 9.30 x 10(-9) M. These results demonstrated that the Cd(II)-Morin indicator provides great promise for the rapid and selective measurement of the target DNA.  相似文献   

6.
We present a graphene oxide (GO) integrated disposable electrochemical sensor for the enhanced detection of nucleic acids and the sensitive monitoring of the surface-confined interactions between the anticancer drug mitomycin C (MC) and DNA. Interfacial interactions between immobilized calf thymus double-stranded (dsDNA) and anticancer drug MC were investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Based on three repetitive voltammetric measurements of 120 μg mL(-1) DNA immobilized on GO-modified electrodes, the RSD % (n = 3) was calculated as 10.47% and the detection limit (DL) for dsDNA was found to be 9.06 μg mL(-1). EIS studies revealed that the binding of the drug MC to dsDNA leads to a gradual decrease of its negative charge. As a consequence of this interaction, the negative redox species were allowed to approach the electrode, and thus increase the charge transfer kinetics. On the other hand, DPV studies exploited the decrease of the guanine signal due to drug binding as the basis for specifically probing the biointeraction process between MC and dsDNA.  相似文献   

7.
The penicillamine (Pen) self-assembled monolayer (SAM) modified gold electrode (Pen/Au) is demonstrated to catalyze the electrochemical response of dopamine (DA) by cyclic voltammetry. A pair of well-defined redox waves was obtained and the calculated standard rate constant (k(s)) is 3.88 x 10(-3) cm/s at the self-assembled electrode. The electrode reaction is a quasi-reversible process. The oxidation peak of DA can be used to determine the concentration of DA. The peak current and the concentration of DA are a linear relationship in the range of 2.0 x 10(-5) M to 8.0 x 10(-4) M. The detection limit is 4.0 x 10(-6) M. By ac impedance spectroscopy the apparent electron transfer rate constant (k(app)) of Fe(CN)(3-)/Fe(CN)(4-) at the Pen/Au electrode was obtained as 2.08 x 10(-5) cm/s. The Pen SAM was characterized with X-ray photoelectron spectroscopy (XPS), grazing angle FT-IR spectroscopy and contact angle goniometer.  相似文献   

8.
Stanić Z  Girousi S 《Talanta》2008,76(1):116-121
The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.  相似文献   

9.
The metallothioneins (MT) self-assembled monolayer modified gold electrode (MT/Au) is demonstrated to catalyze the electrochemical response of dopamine (DA) by cyclic voltammetry. A pair of well-defined redox waves was obtained and the calculated standard rate constant (k(s)) is 6.97 x 10(-3) cm s(-1) (20 degrees C) at the self-assembled electrode. The electrode reaction is a quasi-reversible process. The oxidation peak of DA can be used to determine the concentration of DA. The peak current and the concentration of DA follow a linear relationship in the range of 2.0 x 10(-5) M to 8.0 x 10(-4) M. The detection limit is 6.0 x 10-6 M. By ac impedance spectroscopy, the apparent electron transfer rate constant (k(app)) of Fe(CN)6(3-)/Fe(CN)6(4-) at the MT/Au electrode was obtained as 2.0 x 10(-5) cm s(-1). The MT/Au was characterized with grazing angle FT-IR spectroscopy and contact angle goniometry.  相似文献   

10.
Flavonoids are an interesting group of natural polyphenolic compounds that exhibit extensive bioactivities such as scavenging free radical, antitumor and antiproliferative effects. The anticancer and antiviral effects of these natural products are attributed to their potential biomedical applications. While flavonoids complexation with DNA is known, their bindings to RNA are not fully investigated. This study was designed to examine the interactions of three flavonoids; morin (Mor), apigenin (Api) and naringin (Nar) with yeast RNA in aqueous solution at physiological conditions, using constant RNA concentration (6.25 mM) and various pigment/RNA (phosphate) ratios of 1/120 to 1/1. FTIR, UV-visible spectroscopic methods were used to determine the ligand binding modes, the binding constant and the stability of RNA in flavonoid-RNA complexes in aqueous solution. Spectroscopic evidence showed major binding of flavonoids to RNA with overall binding constants of K(morin) = 9.150 x 10(3) M(-1), K(apigenin)=4.967 x 10(4) M(-1), and K(naringin)=1.144 x 10(4) M(-1). The affinity of flavonoid-RNA binding is in the order of apigenin>naringin>morin. No biopolymer secondary structural changes were observed upon flavonoid interaction and RNA remains in the A-family structure in these pigment complexes.  相似文献   

11.
Cytochrome c (Cyt c) was successfully immobilized on L-cysteine modified gold electrode by multicyclic voltammetry method. The electrochemical behavior of Cyt c on the L-cysteine modified electrode was explored. In 0.10 M, pH 7.0 phosphate buffer solution (PBS), Cyt c showed a quasi-reversible electrochemical redox behavior with E(pc)=0.180 V, E(pa)=0.208 V (versus Ag/AgCl). The Cyt c/L-cysteine modified electrode gave an excellent electrocatalytic activity towards the oxidation of nitric oxide, and the catalysis currents were proportional to the nitric oxide concentration in the range of 7.0 x 10(-7) to 1.0 x 10(-5) M, the linear regression equation is I (microA)=-0.124-0.003 C(NO) (microM), with a correlation coefficient 0.996, The detection limit was 3.0 x 10(-7) M (times the ratio of signal to noise, S/N=3).  相似文献   

12.
The dynamics of electron self-exchange between nanoparticles.   总被引:1,自引:0,他引:1  
The rate of electron self-exchange reactions between discretely charged metal-like cores of nanoparticles has been measured in multilayer films of nanoparticles by an electrochemical method. The nanoparticles are Au monolayer-protected clusters with mixed monolayers of hexanethiolate and mercaptoundecanoic acid ligands, linked to each other and to the Au electrode surface with carboxylate-metal ion-carboxylate bridges. Cyclic voltammetry of the nanoparticle films exhibits a series of well-defined peaks for the sequential, single-electron, double-layer charging of the 1.6-nm-diameter Au cores. The electron self-exchange is measured as a diffusion-like electron-hopping process, much as in previous studies of redox polymer films on electrodes. The average electron diffusion coefficient is DE = 10(+/-5) x 10(-8) cm2/s, with no discernible dependence on the state of charge of the nanoparticles or on whether the reaction increases or decreases the core charge. This diffusion constant corresponds to an average first-order rate constant kHOP of 2(+/-1) x 10(6) s(-1) and an average self-exchange rate constant, kEX, of 2(+/-1) x 10(8) M(-1) x s(-1), using a cubic lattice hopping model. This is a very large rate constant, considering the nominally lengthy linking bridge between the Au cores.  相似文献   

13.
《Electroanalysis》2017,29(10):2292-2299
In this present study, single‐walled carbon nanotubes (SWCNT) modified disposable pencil graphite electrodes (SWCNT‐PGEs) were developed for the electrochemical monitoring of anticancer drug, and its interaction with double stranded DNA (dsDNA). Under this aim, SWCNT‐PGEs were applied for the first time in the literature to analyse of 6‐Thioguanine (6‐TG), and also to investigate its interaction with DNA by voltammetric and impedimetric methods. The surface morphologies of PGE and SWCNT‐PGE were explored using scanning electron microscopy (SEM) and electrochemical characterization of unmodified/modified electrodes was performed by cyclic voltammetry (CV). Experimental parameters; such as, the concentration of 6‐TG and its interaction time with dsDNA were optimized by using differential pulse voltammetry (DPV). Additionally, the interaction of 6‐TG with dsDNA was studied in case of different interaction times by electrochemical impedance spectroscopy (EIS) in contrast to voltammetric results. The detection limit of 6‐TG was found to be 0.25 μM by SWCNT‐PGE.  相似文献   

14.
Xu C  Cai H  He P  Fang Y 《The Analyst》2001,126(1):62-65
The electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene (AFC) is reported. Sample ssDNA was immobilized on a chitosan modified glassy carbon electrode. A sequence-known DNA with 256 bp [obtained by polymerase chain reaction (PCR)] was successfully labeled with the electro-active reagent AFC by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide for the first time. This DNA probe labeled with AFC was applied to hybridize with a sequence-unknown DNA sample. Only the complementary sequence (cDNA) could form a double-stranded DNA (dsDNA) with the DNA probe labeled with AFC. The anodic peak currents (ipa) of the AFC bound to the dsDNA by differential pulse voltammetry were used for the determination of cDNA. The ipa of AFC was linearly related to the concentration of cDNA sequence between 1.0 x 10(-8) and 6.0 x 10(-6) mol L-1. The detection limit was 2.0 x 10(-9) mol L-1 using 3 sigma (where sigma is the standard deviation of blank solution, n = 11). The probe showed high sensitivity and selectivity.  相似文献   

15.
The interaction of ethidium bromide (2,7-diamino-10-ethyl-9-phenylphenanthridinium bromide; EB) with double stranded (ds) calf thymus DNA and thermally denatured single stranded (ss) DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer, pH 5.0. As a result of intercalation of this dye between the base pairs of dsDNA, the characteristic peak of dsDNA, due to the oxidation of guanine residues, decreased and after a particular concentration of EB a new peak at +0.81 V appeared, probably due to the formation of a complex between dsDNA and EB. The non-intercalated EB gives another peak, but at an increased concentration of the dye. A similar behaviour was observed during the interaction of the dye with ssDNA.Furthermore, the interaction of EB with ds, ss and supercoiled (sc) DNA was studied at the hanging mercury drop electrode (HMDE) surface by means of alternating current voltammetry in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. dsDNA yields a smaller peak at −1.42 V (peak III) compared to the one yielded by ssDNA, since the latter is a relaxed and more accessible form. By addition of EB into the buffer solution an increase of peak III was observed in the dsDNA form as well as in ssDNA resulting from their interaction with EB. Furthermore, the appearance of peak III in covalently closed circular scDNA after exposure to increasing concentrations of EB is a result of the introduction of ‘free ends’ in DNA affecting its structural integrity.  相似文献   

16.
A glassy carbon electrode was modified with dsDNA and a nanocomposite composed of multi-walled carbon nanotubes and chitosan (MWNT-chit). The electrode was applied to the electrochemical detection of DNA damage as induced by in situ generated bisphenol A (BPA) radicals through electro-oxidation. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that MWNT-chit nanocomposite represents a viable platform for the immobilization of DNA that effectively promotes electron transfer between DNA and the electrode. The mode of interaction between DNA and BPA was investigated by differential pulse voltammetry and UV-vis spectrophotometry, indicating that the dominant interaction is intercalation. In order to explore the mechanism of damage caused by BPA radicals, the electro-oxidation of BPA at the modified glass electrode was investigated. Based on the signal for guanine without any other external indicator, DNA damage was investigated through the electro-oxidation of BPA.  相似文献   

17.
高序热解石墨与玻碳电极上DNA的氧化和吸附行为   总被引:3,自引:0,他引:3  
周剑章 《电化学》1999,5(2):186-193
在高序热解石墨(HOPG)电极上,采用微分脉冲伏安法(DPV)和电化学原子显微镜法(ECAFM)探究小牛胸腺DNA(CT DNA)在电极表面的吸附。实验发现,控制电位下预极化对双链DNA和HOPG电极上的吸附有很大的影响。而对单链DNA影响不大。实验表明,在HOPG电极上EAFM是DNA研究领域十分有用的技术,根据AFM图象,结合文献上的DNA吸附模型提出了CT DNA研究领域十分有用的技术,根据  相似文献   

18.
DNA and gold nanoparticles are co-immobilized at a gold electrode through elaborate self-assembly processes. This configuration has proven to be useful as a sensor for phenothiazine drugs, taking advantage of the well-known, relatively large surface area of gold nanoparticles and the strong intercalation between dsDNA and phenothiazine drugs. This modified electrode has demonstrated good sensitivity and stability towards the oxidation of two model phenothiazine drugs: promethazine and chlorpromazine. A linear dependence between the concentration of phenothiazine drugs and the peak current is observed, with a concentration range of 2.0 x 10(-5)-1.6 x 10(-4) M and 1.0 x 10(-5)-1.2 x 10(-4) M, and a detection limit of 1.0 x 10(-5) M and 7.0 x 10(-6) M, for promethazine and chlorpromazine, respectively.  相似文献   

19.
The electrochemical behavior of calcein (CA) has been investigated by using a conductive carbon black paste electrode (CCBPE) as working electrode. It exhibits a single well‐defined redox peak in phosphate buffered saline in the range of pH 5.5–8.0, which attributes to the irreversible oxidation with 2 electrons and 2 protons participation. Under the optimized analytical conditions, the proposed linear sweep voltammetry (LSV) method allows the determination of CA in a linear concentration range of 0.64–9.60 µM, with a limit of detection of 0.32 µM. Further, the interaction between CA and DNA were studied by voltammetric and spectrometric methods. Both studies have shown that CA can bind to DNA by the intercalation binding mode. Under the present experimental condition, the binding constant β of CA and dsDNA is 1.10×107. Meanwhile, in the loop‐mediated isothermal amplification (LAMP) reaction mixture there is obvious interaction between CA and dsDNA, resulting in a nonignorable decrease of the indicating sensitivity.  相似文献   

20.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号