首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of oxygen with pre~reduced silver catalysts as well as their catalytic propertiesfor CO selective oxidation in H2 after oxygen pre-treatment are studied in this paper. It is found that the pretreatment exerts a strong influence on the activity and selectivity of the silver catalyst. A drop in activity and selectivity is observed after treating a pre-reduced catalyst with oxygen at low temperatures,whereas a converse result is obtained after an oxidizing treatment at high temperatures (T≥350℃). O2-TPD results show that surface oxygen species adsorbs on silver surface after the oxygen treatment at low temperatures. However, penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile the surface oxygen species disappear. No other silver species except metallic silver are observed on all the catalysts by XRD, and the size of silver particle is not changed after the treatment with oxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also be removed by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorption and diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing the decrease in CO oxidation activity, in other words, it is important to obtain a clean silver surface for increasing the catalyst activity in CO removal from H2-rich feed gas. The differences in activity and selectivity due to the oxygen pretreatment at different temperatures axe discussed in terms of the changes in the surface/subsurface oxygen species of the silver particles.  相似文献   

2.
The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H2), are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 approximately 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H2 treatment at low temperatures (100 approximately 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (>300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 approximately 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (>300 degrees C) is still higher than that directly pretreated with H2. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.  相似文献   

3.
A heat-flow microcalorimeter equipped with a pulsed flow reactor has been used to study the reaction of oxygen, at 473 K, with a series of silica-supported silver catalysts. Combustion of impurities with the production of carbon dioxide and water was detected and allowed to correct the calorimetric data. At 473 K, adsorption of oxygen at the surface of silver is a fast process; incorporation of oxygen into deeper metal layers, though present, is a slow process. The differential heats of interaction decrease with increasing amounts of consumed oxygen but always exceed the heat of formation of bulk silver oxides. The average heat of formation of an oxygen monolayer varies from sample to sample and is correlated with the intrinsic activity of the catalysts for ethylene oxidation: surface oxygen species are apparently more catalytically active when they are less energetically bonded at the silver surface.  相似文献   

4.
The preparation of model silver catalysts supported on highly oriented pyrolytic graphite is described, and the effect of the Ag particle size on the catalytic ethylene oxidation into ethylene oxide, studied by in situ XPS and mass spectrometry, is considered. For a mean particle diameter of 8 nm, the adsorbed oxygen species characterized by an O 1s binding energy of 530.8 ± 0.2 eV (electrophilic oxygen) forms on the silver surface exposed to the ethylene-oxygen reaction mixture. Larger silver particles with a mean diameter of 40 nm additionally contain the adsorbed oxygen species characterized by an O 1s binding energy of 529.2 ± 0.2 eV (nucleophilic oxygen). The presence of both oxygen species on the surface of the larger particles ensures the formation of ethylene oxide, while the sample with the smaller silver particles is inactive in the epoxidation reaction. The O 1s signal at 530.8 eV is partly due to oxygen dissolved in the subsurface layers of silver.  相似文献   

5.
The oxidation of carbon monoxide with nitrous oxide on mass-selected Au(3)(+) and Ag(3)(+) clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au(3)(+) the cluster itself acts as reactive species that facilitates the formation of CO(2) from N(2)O and CO, for silver the oxidized clusters Ag(3)O(x)(+) (n=1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N(2)O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.  相似文献   

6.
The electrochemical measurement of oxygen activity using ion-conducting solid electrolytes (λ-sensors) has become widely known, at least since the application of three-way catalysts in the postcombustion of exhaust gases from spark-ignition engines. However, the use of solid ion conductors is not limited to control devices. There are various other potential applications and numerous problems which can be studied: the formation of oxides in the course of catalytic reactions on metal surfaces, the improvement of selectivity and yield of catalytic reactions, such as the epoxidation of ethylene on silver catalysts and, finally, the cogeneration of electrical energy during oxidation reactions, such as the partial oxidation of methanol to formaldehyde.  相似文献   

7.
Catalytic reactions with oxygen are divided into two groups: electrophilic oxidation proceeding through activation of oxygen, and nucleophilic oxidation in which insertion of nucleophilic oxygen species into previously activated organic molecule occurs. The role of different types of lattice oxygen in the nucleophilic oxygen addition as well as catalyst properties determining the electrophilic pathway are discussed.  相似文献   

8.
High-valent iron-oxo species are appealing for conducting O−O bond formation for water oxidation reactions. However, their high reactivity poses a great challenge to the dissection of their chemical transformations. Herein, we introduce an electron-rich and oxidation-resistant ligand, 2-[(2,2′-bipyridin)-6-yl]propan-2-ol to stabilize such fleeting intermediates. Advanced spectroscopies and electrochemical studies demonstrate a high-valent FeV(O) species formation in water. Combining kinetic and oxygen isotope labelling experiments and organic reactions indicates that the FeV(O) species is responsible for O−O bond formation via water nucleophilic attack under the real catalytic water oxidation conditions.  相似文献   

9.
Hydrogen species on oxides are widely involved in oxides-catalyzed reactions such as H_2/hydrocarbon oxidation, hydrogenation/dehydrogenation, water-gas shift, and water-splitting reactions. Thus identifications of hydrogen species on oxide surfaces and their reactivity are important for fundamental understanding of these oxides-catalyzed reactions. In this Feature Article, we briefly review our research progress on the reactivity of various hydrogen species on oxides, including surface hydroxyl species,hydride species and hydrated protons. We have successfully developed effective strategies of using gas-phase atomic H to controllably create oxygen vacancies and prepare various hydrogen species on oxide model catalysts under ultra-high vacuum(UHV) conditions and using well-defined oxide nanocrystals with different surface structures and oxygen vacancy concentrations to study the H_2-oxide interaction under ambient or even higher H_2 pressures. Reactivity of various hydrogen species on oxide surfaces has been identified, including local oxygen vacancy-controlled reactivity of OH species, oxygen vacancystabilized hydride species, homolytic dissociation of H2 at oxygen vacancies of reduced oxide surfaces into hydride species accompanied by surface oxidation, photoexcited holes-stimulated desorption of hydride species, electron-stimulated desorption of hydride and OH species, and photoexcited electrons-stimulated desorption of hydrated protons. Strong influences of oxygen vacancies in oxides on both stability and reactivity of various hydrogen species on oxide surfaces are highlighted.  相似文献   

10.
The kinetics of the separate reaction steps, corresponding to the stepwise redox mechanism of ethylene oxidation over silver, was studied. The results are used for the interpretation of the kinetics of overall catalytic reactions by taking into account an influence of the adsorption of oxygen on the surface properties of silver.  相似文献   

11.
Silver (II) oxide layers (AgO) were prepared by anodic oxidation of pre‐oxidized, Ag2O‐covered silver electrodes in 1 M NaOH (pH 13.8). The oxidized electrodes were investigated using a combination of electrochemical techniques, ex situ X‐ray photoelectron spectroscopy (XPS) and in situ surface‐sensitive grazing incidence X‐ray absorption spectroscopy (EXAFS) under full potential control. The application of these different techniques leads to a detailed, consistent picture of the anodic silver (II) oxide layer formation. The experiments have shown that the chemical composition of the AgO layer varies significantly with oxidation potential, revealing a decreasing oxygen deficiency with increasing anodization potential and oxidation time. XPS as well as EXAFS experiments support the interpretation of the oxide as a mixed valence Ag + Ag3 + O2 with different contributions of Ag + and Ag3 + species, depending on potential and anodization time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The singlet oxygen oxidation of cis- and trans- 1,4-polybutadienes was studied by using singlet oxygen generated in a microwave generator and in dye-photosensitized reactions of these polymers in the solid state and in solution. It was shown that the reactions of singlet oxygen result in formation of hydroperoxide groups, whereas ultraviolet oxidation by molecular oxygen in addition leads to formation of carbonyl groups. During dye-photosensitized oxidation of polydienes in benzene solution, a very rapid decrease in the molecular weight was observed.  相似文献   

14.
氧化铈独特的氧化还原性能使其适合用作氧化反应中的催化剂或载体.氧化铈负载的过渡金属纳米粒子或孤立的单原子提供了金属-载体界面,从而降低了去除界面氧原子的能耗,提供了可以参与ManVanKulvian氧化过程的活性氧物种.CO氧化是测试氧化铈负载催化剂还原性的主要探针反应,并且它常见于在相对低温下消除CO的各种应用中.在过量H2中优先氧化CO(PROX)反应可控制CO浓度达到超低水平,以防止氢氧化电催化剂中毒.催化剂在CO氧化反应中的活性和在PROX反应中对CO和H2的选择性取决于金属物种的种类和分散性、CeO2的结构和化学性质以及催化剂的合成方法.在这篇综述中,我们总结了最近发表的关于CeO2负载的金属纳米粒子和单原子催化CO氧化和PROX反应的相关工作;以及不同的负载金属和同种金属在普通CeO2表面上的反应性.我们还总结了密度泛函理论计算中提出的最可能的反应机理;并且讨论了各种负载型金属在PROX反应中影响CO氧化选择性的因素.  相似文献   

15.
Kinetics of interaction of ethylene with pre-adsorbed oxygen on a silver film was studied at 473 K and different initial values of surface coverage with oxygen. Dependencies of the initial rates of partial and deep ethylene oxidation on the oxygen surface coverage manifest themselves as peaked curves with coinciding maxima. The results are considered as evidence that the processes of partial and deep ethylene oxidation on silver, when they occur at optimal conditions, proceed viaidentical active centers.  相似文献   

16.
Acetaldehyde oxidation to form acetic acid is enhanced by oxygen adsorbing ad-atoms to a great extent. At the same time, the oxidation is enhanced by the Shole control by Bi, Te, Se and S ad-atoms, which do not adsorb oxygen. The number of unoccupied Pt sites isolated by these inactive ad-atoms (Shole), which is available for reactions, is less than that required for the formation of poisoning species but equal to that required for the oxidation, resulting in the inhibition of the poison formation reaction and the enhancement of the oxidation. The same type of enhancement, that is, the enhancement both by the Shole control by ad-atoms and by oxygen adsorbing ad-atoms, was previously found in the enhancement of formaldehyde oxidation by ad-atoms.  相似文献   

17.
The surface state of electrolytic silver before and after treatment with a reaction mixture in the course of ethylene glycol oxidation to glyoxal was studied using X-ray photoelectron spectroscopy and scanning electron microscopy. It was found that electrophilic forms of adsorbed oxygen, which participate in the selective conversion of ethylene glycol, were formed on the surface of electrolytic silver crystals under exposure to oxygen under conditions similar to catalytic process conditions. The treatment of the catalyst with a reaction mixture resulted in the formation of filamentous carbon deposition products. A mechanism of formation of carbon-containing products was proposed.  相似文献   

18.
A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.  相似文献   

19.
20.
The measurements of electron work function were applied for in situ monitoring of the charge transfer during oxidation and reduction for well-defined titanium dioxide, TiO 2, at room temperature. The TiO 2 specimen was initially standardized at 1173 K in the gas phase of controlled oxygen activity, at p(O 2) = 10 Pa, and then cooled down in the same gas phase. The work function changes were monitored during oxidation at room temperature at p(O 2) = 75 kPa and subsequent reduction at p(O 2) = 10 Pa. It is shown that oxidation of TiO 2 at room temperature results in fast oxygen chemisorption, involving initially the formation of singly ionized molecular oxygen species, followed by the formation of singly ionized atomic oxygen species, and subsequent slow oxygen incorporation. Although all these processes lead to work function increase, the components of the work function changes related to the individual processes may be distinguished based on different kinetics. The obtained work function data indicate that oxidation results in rapid surface coverage with singly ionized molecular oxygen species, which are subsequently dissociated leading to the formation of singly ionized atomic species. The related chemisorption equilibria are established within 2 and 5 h, respectively. Oxygen incorporation leads to slow work function changes, which achieve a maximum within 100 h. The determined work function data were assessed by using a theoretical model that describes the electrical effects related to different mechanisms of TiO 2 oxidation. The work function data indicate that oxygen incorporation leads to structural changes of the outermost surface layer resulting, in consequence, in a change of the external work function component. Reimposition of the initial gas phase, p(O 2) = 10 Pa, leads to partial desorption of weakly adsorbed molecular species formed during oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号