首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To explore the possible applications of hyperbranched polymers for modifying linear polyamides, two hyperbranched aromatic polyesters characterized as high Tg polymers possessing phenolic end groups were used in melt mixing with partly aromatic polyamide and commercially available aliphatic polyamide‐6, respectively. Different amounts of both hyperbranched polyesters (from 1 wt % up to 20 wt %) were added to the polyamides, and the influence of these hyperbranched polyesters on the properties of the polyamides was investigated. The hyperbranched polyester based on an AB2 approach was found to be the most effective modifier. A significant increase of the glass transition temperature of the final blend was detected. However, a remarkable reduction of crystallinity as well as complex melt viscosity of those blends was also observed. The use of an A2+B3 hyperbranched polyester as melt modifier for the polyamides was less effective for changing the thermal properties, and the complex melt viscosity of the final material increased since heterogeneous blends were formed. In contrast to that, generally, the addition of the AB2 hyperbranched polyester to the polyamides resulted in homogeneous blends with improved Tg and processability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3558–3572, 2009  相似文献   

2.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

3.
The effect of various benzenesulfonamide (BSA) plasticizers on the amorphous phase of semicrystalline polydodecamide (PA‐12) has been investigated. MonoBSAs appear as efficient glass‐transition temperature (Tg) depressors because of their miscibility with the host polyamide (PA), low glass transition, and small molecule size. PA‐12's Tg shifts from 50 to about 0 °C at 20 mol % of the most efficient molecules. Comparatively, the more bulky bisBSAs appear to induce less important absolute Tg decreases (30 K at 20 mol %), although these appear as more important when considering the polymer Tg to plasticizer Tg difference. This unexpected observation could be ascribed to both the amide‐sulfonamide interactions and the sterically generated disorder within the polyamide because of the plasticizer molecule's size. Phase‐separation behavior of BSA plasticizers within the host PA has also been investigated. Crystalline phenyl‐SO2NH2, for instance, dephased beyond 20 mol % in PA‐12, forming distinct 1–2 micrometer wide crystalline domains as a result of its high propensity to crystallize upon cooling from the melt. By contrast, slow crystallizing N,N‐dimethylBSA, which lacks any specific interaction for PA‐12, remained nevertheless dispersed at a molecular level (metastable state, no phase separation) when vitrification of the host PA‐12 amorphous phase occurred on cooling. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2208–2218, 2002  相似文献   

4.
A ternary miscible blend system comprising only crystallizable aryl polyesters [poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(butylene terephthalate)] was characterized with the criteria of thermal analyses, microscopy, and X‐ray characterizations. The reported ternary miscibility (in the quenched amorphous state of blends of the three aryl polyesters) was truly physical and under the condition of no chemical transesterifications; this justified that transesterification was not a necessary condition for miscibility in polyester blends in this case. This study further proposed and tested a novel concept of a new criterion for miscibility characterization for polymer blends of only crystallizable polymers. A single composition‐dependent cold‐crystallization‐temperature (Tcc) peak in blends of only semicrystalline polymers was taken as an indication of an intimate mixing state of miscibility. The theoretical background for establishing the single composition‐dependent Tcc peak as a valid miscibility criterion for crystallizable polymer blends was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2394–2404, 2003  相似文献   

5.
The segmental dynamics of backbone‐deuterated polystyrenes (d3PS) with varying molecular weights (1.7–67 kg/mol) have been measured in blends with poly(vinyl methyl ether) (PVME). 2H NMR T1 values at 15 and 77 MHz are reported for the pure d3PS and for the dilute d3PS component in PVME matrices. The temperature shift that is needed to superpose the NMR T1 data for the pure d3PS and the d3PS as a dilute component in the blend ranges from 45 to 70 K. In the framework of Lodge/McLeish model, the self‐concentration value for d3PS in these dilute blends with PVME is found to be independent of molecular weight. We thus establish for this system that the substantial influence of molecular weight on the blend segmental dynamics can be explained by homopolymer Tg differences. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2252–2262, 2007  相似文献   

6.
Phase behavior in domains of immiscible blends of poly(pentamethylene terephthalate)/poly(ether imide) (PPT/PEI) and poly(hexamethylene terephthalate)/poly(ether imide) (PHT/PEI) were investigated using differential scanning calorimetry (DSC). The measured glass transition temperature (T g) reveals that aryl polyesters dissolve more in the PEI-rich phase than the PEI does in the aryl polyester-rich phase, for both PPT/PEI and PHT/PEI systems. Additionally, optical microscopy supports the conclusion that PPT (or PHT) dissolves more in the PEI-rich phase than PEI does in the PPT-rich (or PHT-rich) phase in the aryl polyester/PEI blends. Furthermore, the Flory–Huggins interaction parameters (χ12) for the PPT/PEI and the PHT/PEI blends were calculated to be 0.12 and 0.17, respectively. For the blend systems comprising of PEI and homologous aryl polyesters, the value of χ12 exhibits a trend of variation with respect to structure of aryl polyesters. For the PPT/PEI and PHT/PEI blends, investigated in this study, value of the polymer–polymer interaction parameter (χ12) between the aryl polyester and the PEI was found to be positive, which increases with the number of methylene moieties in the repeating unit of the aryl polyester, ultimately resulting in phase separation observed.  相似文献   

7.
The phase behavior of a partially miscible blend of poly(ethylene oxide) (PEO) and cellulose acetate butyrate (CAB) and the crystalline microstructure of PEO in the blend were studied with differential scanning calorimetry (DSC), optical microscopy, and synchrotron small‐angle X‐ray scattering (SAXS) methods. PEO/CAB showed a lower critical solution temperature (LCST) of 168 °C at the critical composition of PEO of 60 wt %. All blend compositions showed a single glass‐transition temperature (Tg) when they were prepared at temperatures lower than the LCST. However, with increasing CAB content, Tg of the blend changed abruptly at 70 wt % CAB; that is, a cusp existed. Below 70 wt % CAB, the change in Tg with blend composition was predicted by the Brau–Kovacs equation, whereas this change was predicted by the Fox equation at higher CAB contents. A gradual but small depression of the melting point of PEO in the blend with an increasing amount of CAB suggested that the PEO/CAB blends exhibited a weak intermolecular interaction. From DSC and SAXS experiments, it was found that amorphous CAB was incorporated into the interlamellar region of PEO for blends with less than 20 wt % CAB, whereas it was segregated to exist in the interfibrillar region in PEO for other blends with larger amounts of CAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1673–1681, 2002  相似文献   

8.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

9.
The phase behavior of ternary poly‐(2‐vinylpyridine) (P2VPy)/poly‐(N‐vinyl‐2‐pyrrolidone) (PVP)/bis‐(4‐hydroxyphenyl)methane (BHPM) blends was studied. Fourier transform infrared spectroscopic examinations demonstrated that BHPM interacts with P2VPy and PVP through hydrogen‐bonding interactions. The addition of a sufficiently large amount of BHPM transformed an opaque blend with two glass‐transition temperatures (Tg's) to a transparent single‐Tg blend. Scanning electron microscopic studies showed that the transparent single‐Tg blend is micro‐phase‐separated at a scale of about 30 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1815–1823, 2001  相似文献   

10.
An aliphatic polyester has been prepared from ethylene oxide and maleic anhydride that undergoes reversible transformation between amorphous (Tg=18 °C) and crystalline (Tm=124 °C) states through cis–trans isomerization of the C=C bonds in the polymer backbone without any change in either the molecular weight or dispersity of the polymer. A similar transformation was also observed in chiral unsaturated polyesters formed from enantiopure terminal epoxides, such as epichlorohydrin, phenyl glycidyl ether, and (2,3‐epoxypropyl)benzene. These unsaturated polyesters with 100 % E‐configuration in the crystalline state were prepared by quantitative isomerization of their Z‐configuration analogues in the presence of a catalytic amount of diethylamine, while in the presence of benzophenone, irradiation with 365 nm UV light resulted in the transformation of about 30 % trans‐alkene to cis‐maleate form, thereby affording amorphous polyesters.  相似文献   

11.
The miscibility behavior of poly(2‐ethyl‐2‐oxazoline) (PEOx)/poly(vinyl phenyl ketone hydrogenated) (PVPhKH) blends was studied for the entire range of compositions. Differential scanning calorimetry and thermomechanical analysis measurements showed that all the PEOx/PVPhKH blends studied had a single glass‐transition temperature (Tg). The natural tendency of PVPhKH to self‐associate through hydrogen bonding was modified by the presence of PEOx. Partial IR spectra of these blends suggested that amide groups in PEOx and hydroxyl groups in PVPhKH interacted through hydrogen bonding. This physical interaction had a positive influence on the phase behavior of PEOx/PVPhKH blends. The Kwei equation for Tg as a function of the blend composition was satisfactorily used to describe the experimental data. Pure‐component pressure–volume–temperature data were also reported for both PEOx and PVPhKH. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 636–645, 2004  相似文献   

12.
High Tg amorphous copolyester thermoplastics were synthesized by incorporating 4,4′‐bibenzoate (4,4′BB) and 3,4′‐bibenzoate moieties into the polyester backbone via melt polycondensation. The high levels of crystallinity typically associated with 4,4′BB containing polyesters were suppressed through copolymerization of ethylene glycol, 1,4‐cyclohexane dimethanol, and neopentyl glycol (NPG) diols. NPG was shown to be highly effective in suppressing crystallization and was used to produce amorphous compositions with Tg’s as high as 129 °C. Diol ratios were determined by 1H NMR spectroscopy and molecular weights were assessed with inherent viscosity (ηinh). Thermogravimetric analysis showed single‐step weight losses in the range of 395 – 419 °C. Differential scanning calorimetry was used to determine melting points and glass transition temperatures over a wide range of copolyester compositions and identified amorphous compositions. Dynamic mechanical analysis confirmed Tg’s and was used to study β‐relaxations below the Tg. Rheological analysis revealed the effect of NPG structures on shear thinning and thermal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 579–587  相似文献   

13.
Blends of poly(acrylic acid) (PAA) and poly(p‐vinylphenol) (PVPh) were prepared from N,N‐dimethylformamide (DMF) and ethanol solutions. The DMF‐cast blends exhibited single Tg's, as shown by modulated differential scanning calorimetry, whereas the ethanol‐cast blends had double Tg's. Fourier transform infrared spectroscopy showed that there was a specific interaction between PAA and PVPh in the DMF‐cast blends. The single‐Tg blends cast from DMF showed single‐exponential decay behavior for the proton spin–lattice relaxation in both the laboratory frame and the rotating frame, indicating that the two polymers mixed intimately on a scale of 2–3 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 789–796, 2003  相似文献   

14.
This study used refractometry, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and dielectric analysis to assess the viscoelastic properties and phase behavior of blends containing 0–20% (w/w) 12‐tert‐butyl ester dendrimer in poly(methyl methacrylate) (PMMA). Dendritic blends were miscible up through 12%, exhibiting an intermediate glass‐transition temperature (Tg; α) between those of the two pure components. Interactions of PMMA C?O groups and dendrimer N? H groups contributed to miscibility. Tg decreased with increasing dendrimer content before phase separation. The dendrimer exhibited phase separation at 15%, as revealed by Rayleigh scattering in ultraviolet–visible spectra and the emergence of a second Tg in dielectric studies. Before phase separation, clear, secondary β relaxations for PMMA were observed at low frequencies via dielectric analysis. Apparent activation energies were obtained through Arrhenius characterization. A merged αβ process for PMMA occurred at higher frequencies and temperatures in the blends. Dielectric data for the phase‐separated dendrimer relaxation (αD) in the 20% blend conformed to Williams–Landel–Ferry behavior, which allowed the calculation of the apparent activation energy. The αD relaxation data, analyzed both before and after treatment with the electric modulus, compared well with neat dendrimer data, which confirmed that this relaxation was due to an isolated dendrimer phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1381–1393, 2001  相似文献   

15.
Using the organic compound 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) as a catalyst for step‐growth polymerization, a series of well‐defined hydroxyl‐telechelic renewable aliphatic polyesters (including poly(1,3‐propylene adipate); poly(1,4‐butylene adipate); poly(1,12‐dodecylene sebacate); and poly(1,2‐dimethylethylene adipate), PDMEA) were synthesized and studied. PDMEA is a novel polyester, which has not been reported before. The results of 1H NMR and Matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry indicate that the polymers are fully hydroxyl terminated. From differential scanning calorimetry (DSC) thermograms, we found that the glass transition temperatures (Tg) of these polyesters are below ?20 °C. Only a Tg but no melting peak is observed in the DSC curve of the novel PDMEA. This indicates that PDMEA, contrary to the other renewable polyesters, is totally amorphous. Furthermore, using hexamethylene diisocyanate and hexamethylene diamine, poly(ester urethane urea)s (PEUUs) based on PDMEA were successfully synthesized. The Tg of the prepared PEUUs is below 0 °C, and no melting behavior of the soft‐segment is observed. The PEUU, with a flow temperature of over 200 °C, thus behaves as an elastomer at room temperature. Its mechanical properties, such as a relatively low tensile E‐modulus (≈20 MPa) at room temperature and a sufficiently high strain at break (≈560%), make it suitable for use in, for example, biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The solid-state NMR isotropic line shape of the carbonyl 13C resonance is useful as a qualitative diagnostic probe of the polyester component′s morphology and molecular mobility in partially miscible blends with poly(vinylphenol), PVPh. The main-chain polyesters chosen for investigation in this study are poly(ethylene succinate), poly(ethylene adipate), poly(butylene adipate), and poly(caprolactone). A crystalline phase exists for polyester-rich mixtures in all cases. Verification of this claim is provided by DSC endothermic tran-sitions that map out melting point depression in the temperature-composition phase dia-grams. The carbonyl 13C-NMR signal in the crystalline domains exhibits a full width at half height of 1–2 ppm when the glass transition temperature of the blends is below the temperature of the NMR experiment. In all cases, a single concentration-dependent glass-transition temperature is measured by DSC, which increases monotonically from below ambient for polyester-rich blends to well above ambient for blends that are rich in poly(vinylphenol). When the concentration of the amorphous proton donor PVPh is suf-ficient to thwart crystallization of the polyester and increase the glass transition temperature of the blends above the temperature of the NMR experiment, the line width of the carbonyl resonance increases three- to fourfold to ca. 5–6 ppm. When the blends are completely amorphous and Tg is above ambient, the polyester carbonyl 13C line shape reveals at least two morphologically inequivalent microenvironments. A partially resolved carbonyl signal in rigid amorphous blends is (a) identified at higher chemical shift relative to the crystalline component, and (b) attributed to hydrogen bonding in the amorphous phase. This inter-action-sensitive hydrogen-bonded carbonyl signal accounts for an increasing fraction of the overall NMR absorption envelope of the carbonyl carbon site when the polyester is saturated with PVPh. The main-chain polyesters were chosen to probe the effect of chemical structure of the proton acceptor on the potential for hydrogen-bond formation. Aliphatic CH2 spacers between the carbonyl groups dilute the concentration of interacting sites, and the dependence of the carbonyl 13C-NMR line shape on blend concentration reveals unique spectroscopic behavior in each of the four blend systems investigated. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Differential scanning calorimetry was used to determine the miscibility behavior of several polyester/Saran blends, the two polymers forming these blends being semicrystalline. It was found that Saran is miscible with polycaprolactone (PCL), polyvalerolactone, poly(butylene adipate), and poly(hexamethylene sebacate) since a single glass transition temperature Tg was observed at each composition. However, immiscibility was found between Saran and poly(ethylene adipate), poly-(ethylene succinate), poly(β-propiolactone), and poly(α-methyl-α-n-propyl-β-propiolactone) since two Tg's were recorded at several compositions. Blends were then obtained containing, over a wide range of composition, a miscible amorphous phase and two different types of crystals. From melting-point depression data on PCL and Saran crystals, thermodynamic interaction parameters χ were calculated and found to be different for PCL-rich blends and for Saran-rich blends. This result suggests a variation of χ with composition. Saran is a polymer which does not contain α-hydrogens and its miscibility with polyesters may result from a β-hydrogen bonding interaction or a C?O/C? Cl dipole-dipole interaction.  相似文献   

18.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A series of novel crosslinkable, highly fluorinated polyesters were synthesized by copolycondensation reactions of terephthaloyl chloride with 4, 4′‐(hexafluoroisopropy‐lidene)‐diphenol and 2,2,3,3,4,4,5,5,6,6,7,7‐dodecafluoro‐octane‐1,8‐diol, followed by reaction with 2‐hydroxyethyl methacrylate. The resulting polyesters with the molecular weights (Mn: 12,100–20,000 g mol?1) and polydispersities (1.49–2.25) were useful for the fabrication of polymer optical devices because of their good solubility in common organic solvent and the processable flexibility. The ratios of the components of the polyesters were characterized by FTIR and NMR. The polyesters had high glass transition temperature (Tg,: up to 170 °C) and good thermal stabilities (Td: up to 470 °C). The refractive index of the polyester film was tuned and controlled in the range of 1.447–1.576 at 1550 nm by monitoring the component fractions during the preparation procedures. Low‐loss optical waveguides were fabricated from the resulting polyesters and the propagation loss of the channel waveguides was measured to be around 0.56 dB/cm at 1550 nm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5923–5931, 2007  相似文献   

20.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号