首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Donor‐ or acceptor‐substituted polythiophenes have many potential applications in optoelectronics. Fluorinated polythiophenes are particularly attractive because of the presence of fluorine, which can withdraw electrons and also improve polymer chemical stability. Because of the promising future of these polymers, there has been much interest in identifying favorable synthetic routes to new fluorinated monomers and polymers. In this study, the monomer had an electron‐withdrawing fluorinated ester and was derived from 3‐thiophene carboxylic acid and 2,2,3,3,4,4,4‐heptafluoro‐1‐butanol. The synthesis of an n‐type fluorinated and terminal‐functionalized polythiophene was accomplished with the Ullmann coupling reaction. A polymer soluble in tetrahydrofuran was obtained with a molecular weight of approximately 15,000 g/mol. In solution, it exhibited a band gap of 2.4 eV, and the photoluminescent excitation and emission maxima were 370 nm and 555 nm, respectively. All peaks were bathochromically shifted when they were measured in the solid state. The glass‐transition and decomposition (in air) temperatures were 129 and 493 °C, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4280–4287, 2005  相似文献   

2.
A new solution‐processable acceptor‐acceptor conjugated copolymer ( P1 ) based on perylene diimide (PDI) incorporating planar electron‐deficient fluorenone was synthesized by palladium(0)‐catalyzed Suzuki coupling reaction. Relative to the donor‐acceptor conjugated copolymer ( P2 ) of PDI and dithienothiophene, polymer P1 exhibits 0.1 eV down shift of lowest unoccupied molecular orbital (LUMO) level, 70 nm blue shift of low‐energy absorption band, and 0.36 eV increase of optical band gap. Polymer P1 in top‐contact bottom‐gate organic field‐effect transistors exhibits a saturation electron mobility of 0.01 cm2/(V s) in air, while P2 does not function in the same device in air. The better air stability of P1 is attributed to a more dense packing of the polymer chains excluding oxygen or water and lower LUMO level of P1 . © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Polymers using new electron‐deficient units, 2‐pyriminecarbonitrile and 2‐fluoropyrimidine, were synthesized and utilized for the photovoltaics. Donor‐acceptor (D‐A) types of conjugated polymers ( PBDTCN, PBDTTCN, PBDTF, and PBDTTF ) containing 4,8‐bis(2‐octyldodecyloxy)benzo[1,2‐b;3,4‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐octyldodecyloxy)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) as electron rich unit and 2‐pyriminecarbonitrile or 2‐fluoropyrimidine as electron deficient unit were synthesized. We designed pyrimidine derivatives in which strong electron‐withdrawing group (C?N or fluorine) was introduced to the C2 position for the generation of strong electron‐deficient property. By the combination with the electron‐rich unit, the pyrimidines will provide low band gap polymers with low highest occupied molecular orbital (HOMO) energy levels for higher open‐circuit voltages (VOC). For the syntheses of the polymers, the electron‐rich and the electron‐deficient units were combined by Stille coupling reaction with Pd(0)‐catalyst. Absorption spectra of the thin films of PBDTTCN and PBDTTF with BDTT unit show shift to a longer wavelength region than PBDTCN and PBDTF with BDT unit. Four synthesized polymers provided low electrochemical bandgaps of 1.56 to 1.96 eV and deep HOMO energy levels between ?5.67 and ?5.14 eV. © 2015 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 771–784  相似文献   

4.
The synthesis and characterization of a new family of soluble oligothiophene‐S,S‐dioxides and their use as building blocks to form polythiophene‐S,S‐dioxides via microwave‐assisted Stille coupling polymerization are described. Incorporation of the sulfone group into the polythiophene backbone leads to narrowing of the polymer bandgap, and while the energies of both Frontier orbitals in polythiophene‐S,S‐dioxide are lower with respect to polythiophenes, this tendency is considerably stronger for the lowest unoccupied molecular orbital than for the highest occupied molecular orbital, resulting in greater electron‐accepting ability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Aromatic polyoxadiazole derivatives containing 9,9′‐dioctylfluorene were successfully synthesized via the Suzuki coupling reaction. The oxadiazole moiety in the polymer backbone was linked with the bis(hydroxyphenyl) group in its 2‐position to exhibit a large Stokes shift in the emission spectrum due to the excited‐state intramolecular proton transfer. To prepare the polymer via the Suzuki cross‐coupling reaction, the hydroxyl group in the monomer was protected with the t‐butoxycarbonyl group before polymerization and removed after polymerization to a desirable extent. The polymer with the free hydroxyl group showed a considerable sensitivity for nitroaromatic compounds, exhibiting fluorescence quenching in a chloroform solution. The interaction between the electron‐donating OH group and electron‐deficient nitroaromatic compounds seemed to play a decisive role in fluorescence quenching. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2059–2068, 2006  相似文献   

6.
A series of polythiophenes doped with dithieno[3,2‐b:2′,3′‐d]phosphole units at varying levels (0–17%) were synthesized and characterized. Polymer work up provided two series of polymers from chloroform (C) and hexanes (H) for each doping level, respectively. Systematic structure–property studies revealed that the C‐series polymers generally had higher molecular weights than the H‐series, but also slightly higher relative dithienophosphole concentrations, both having a significant impact on the photophysical and electrochemical properties of the polymers. Furthermore, the presence of the dithienophosphole units also stabilizes the LUMO levels, whereas the HOMO levels remain dominated by the thiophene units, resulting in desirable electronics for an interaction with acceptor materials, such as 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl[6,6]C61. Importantly, increasing amount of dithienophosphole doping results in increased conductivities for the polymers in their oxidized state, while concurrently significantly stabilizing the neutral polythiophenes toward oxidation under environmental conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Three new side‐chain conjugated polythiophene derivatives, poly{3‐[2‐(3‐methoxy‐4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3MOPVT), poly{3‐[2‐(3,5‐dimethoxy‐4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3DMOPVT), and poly{3‐[2‐(3,4‐dioctyloxy‐phenyl)‐vinyl]‐thiophene} (P3DOPVT), were synthesized by Wittig‐Hornor reaction and GRIM method and compared with poly{3‐[2‐(4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3OPVT) for investigating the effect of the end groups of the conjugated side‐chain on the properties of the polymers. Owing to the electron‐donating ability of methoxy groups, the visible absorption peaks of P3MOPVT and P3DMOPVT solutions and films become stronger and red‐shifted compared with P3OPVT. The electrochemical bandgaps of the four polymers are 2.15 eV for P3OPVT, 1.99 eV for P3MOPVT, 1.85 eV for P3DMOPVT, and 2.36 eV for P3DOPVT, respectively, which indicate that the electron‐donating ability of the methoxy end group on the conjugated side chain of P3MOPVT and P3DMOPVT and the large steric hindrance of the two octyloxy end groups on the conjugated side chain of P3DOPVT have obvious influence on the electrochemical properties of the side‐chain conjugated polythiophenes. Polymer solar cells were fabricated with a structure of ITO/PEDOT:PSS/Polymer:PCBM/LiF/Al. The best device, based on P3DMOPVT, shows a power conversion efficiency of 1.63% under the illumination of AM1.5, 80 mW/cm2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4916–4922, 2006  相似文献   

8.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Development of renewable bio‐based unsaturated polyesters is undergoing a renaissance, typified by the use of itaconate and fumarate monomers. The electron‐deficient CC bond found on the corresponding polyesters allows convenient post‐polymerisation modification to give a wide range of polymer properties; this is notably effective for the addition of nucleophilic pendants. However, preservation of unsaturated functionality is blighted by two undesirable side‐reactions, branching/crosslinking and CC isomerisation. Herein, a tentative kinetic study of diethylamine addition to model itaconate and fumarate diesters highlights the significance of undesirable CC isomerisation. In particular, it shows that reversible isomerisation from itaconate to mesaconate (a poor Michael acceptor) is in direct competition with aza‐Michael addition, where the amine Michael donor acts as an isomerisation catalyst. We postulate that undesired formation of mesaconate is responsible for the long reaction times previously reported for itaconate polyester post‐polymerisation modification. This study illustrates the pressing need to overcome this issue of CC isomerisation to enhance post‐polymerisation modification of bio‐based unsaturated polyesters. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1935–1945  相似文献   

10.
A series of alternating copolymers of electron‐rich arylamine and electron‐deficient 2,1,3‐benzothiadiazole (BT), PV‐BT, DP‐BT, and TP‐BT, were synthesized by Heck coupling reaction. UV–vis absorption and fluorescence spectra show that the copolymerization of electron‐rich diphenylamine (DP), triphenylamine (TP), MEH‐PV (PV), and electron‐deficient BT results in low‐bandgap conjugated polymers. Within the three copolymers of PV‐BT, DP‐BT, and TP‐BT, TP‐BT possesses the highest hole mobility of 4.68 × 10? 5 cm2/V, as determined from the space charge limited current (SCLC) model. The bulk heterojunction‐typed polymer solar cells (PSCs) were fabricated with the blend of the copolymers and PCBM as the photosensitive layer. The power conversion efficiencies (PCE) of the PSCs based on PV‐BT, DP‐BT, and TP‐BT reached 0.26%, 0.39%, and 0.52%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The results indicate that TP‐BT is a promising photovoltaic polymer for PSCs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3861–3871, 2007  相似文献   

11.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

12.
Palladium‐catalyzed oxidative homo‐coupling of 2,6‐bis(tributylstannyl)dithienosiloles with CuCl2 afforded poly(dithienosilole‐2,6‐diyl)s as novel polythiophene derivatives with intra‐chain silicon bridges, which exhibited red‐shifted UV absorption maxima by about 100 nm from those of the corresponding silole‐free polythiophenes. Alternate copolymers also were prepared by palladium‐catalyzed cross‐coupling reactions of 2,6‐dibromodithienosiloles with distannylthiophene or bithophene. These polymer films were applied to single and double‐layered organic electroluminescence devices. It was found that some of the resulting polymers exhibited electroluminescence properties and emitted red light in EL devices with the structure of ITO/polymer/Mg‐Ag. Introducing an electron‐transporting Alq3 layer between the polymer film and the Mg‐Ag cathode led to a remarkable improvement in the devices performance. An application of the copolymer to a field effect transistor was also studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4588–4596, 2007  相似文献   

13.
The effect of the presence of hexyl group in thiophene on the photophysical and electrochemical properties of poly[(9,9‐dioctyluorene)?2,7‐diyl‐alt‐(4,7‐bis(3‐hexylthien‐5‐yl)?2,1,3‐benzothiadiazole)?2′,2″‐diyl] (F8TBT) is investigated. The copolymers present electron donor–acceptor architecture and are synthesized by Suzuki coupling reaction. The UV/Vis spectra show absorption maximum in the wavelength range of blue and orange, which are associated with different segments of the polymer backbone. Addition of hexyl substituent groups has a positive effect on the molar absorptivity and increases the emission and absorption intensities due to fluorene and thiophene‐benzothiadiazole‐thiophene (TBT) units, although an increment in the bandgap is observed. Cyclic voltammetry study of the polymer films reveal irreversible reduction and oxidation processes of the TBT units in the polymer chain and the HOMO and LUMO energy levels suggest ambipolar character for the polymers, while the electrochemical bandgaps are consistent with the absorbance measurements. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1975–1982  相似文献   

14.
A series of novel donor–acceptor (D–A) random conjugated terpolymers P2‐P4 along with the homopolymers P1 (BDT‐DPP) and P5 (BDT‐BTDQ) were designed and synthesized by copolymerizing a benzo[1,2‐b:4,5‐b]dithiophene (BDT) donor with an electron‐deficient diketopyrrolo[3,4‐c]pyrrole (DPP) unit and a benzothiadiazolo[3,4‐e]quinoxaline (BTDQ) moieties of different electron‐withdrawing strengths, and the resultant terpolymers showed broad absorption profile ranging from 300 to 1200 nm. The HOMO levels of the polymers were adjusted from ?5.23 to ?5.11 eV, and the optical bandgaps were controlled from 1.32 to 1.13 eV by changing the molar ratio of DPP and BTDQ acceptors. These terpolymers were used as a donor along with PC71BM as an acceptor for the creation of polymer solar cells, and the performance was optimized via variable the donor to acceptor ratio and solvent vapor annealing. The polymer solar cells made from the random terpolymer P3 showed the highest overall power conversion efficiency of (9.27%), which is higher than that for the corresponding homo‐polymers counterparts, that is, P1 (7.27%) and P5 (7.68%). The results demonstrate that the designing of random D‐A1‐D‐A2 terpolymers may be the best approach for efficient polymer solar cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1478–1485  相似文献   

15.
Two regiochemically defined polythiophenes containing thiazolothiazole acceptor unit were synthesized by palladium(0)‐catalyzed Stille coupling reaction. The thermal, electrochemical, optical, charge transport, and photovoltaic properties of these copolymers were examined. Compared to P1 with head‐to‐head coupling of two middle thiophenes, P2 with head‐to‐tail coupling of two middle thiophenes exhibits 40 nm red shift of absorption spectrum in film and 0.3 eV higher HOMO level. Both polymers exhibit field‐effect hole mobility as high as 0.02 cm2 V?1 s?1. Polymer solar cells (PSCs) were fabricated based on the blend of the polymers and methanofullerene[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). The PSC based on P1 :PC71BM (1:2, w/w) exhibits a power conversion efficiency of 2.7% under AM 1.5, 100 mW cm?2, two times of that based on P2 :PC71BM. The higher efficiency is attributed to lower HOMO (?5.6 eV) and smaller phase separation scale in P1 :PC71BM blend. Tiny change in thiophene connection of P1 and P2 lead to great difference in HOMO, phase separation scale, and efficiency of their photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Alternating narrow band gap (NBG) conjugated polymers derived from 6,6′,12,12′‐tetraoctylindeno[1,2‐b]fluorene (IF) and 2,3‐dimethyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DTTP), 2,3‐diphenyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DPTP) or 2,3‐dioctyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DOTP), named as PIF‐DTTP, PIF‐DPTP, and PIF‐DOTP, respectively, were synthesized by Suzuki coupling reaction and characterized. The photochemical stabilities of the copolymers and copolymer derived from IF and 5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DTP) were investigated by the UV absorptions, PL spectra, FT‐IR spectra, and photovoltaic properties of the copolymers as a function of UV irradiation time. The studies revealed that the degradation of thieno[3,4‐b]pyrazine (TP) ring under UV irradiation can be retarded or eliminated by introducing phenyl group into the 2,3‐positions of TP ring, and indicated that 2,3‐diphenylthieno[3,4‐b]pyrazine could be used as durable electron deficient moiety to achieve donor–acceptor NBG‐conjugated polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A series of novel narrow‐band‐gap copolymers ( P1 ‐ P12 ) composed of alkyl‐substituted fluorene (FO) units and six analogous mono‐ and bis(2‐aryl‐2‐cyanovinyl)‐10‐hexylphenothiazine monomers ( M1 ‐ M6 ) were synthesized by a palladium‐catalyzed Suzuki coupling reaction with two different feed in ratios of FO to M1 ‐ M6 (molar ratio = 3:1 and 1:1). The absorption spectra of polymers P1 ‐ P12 exhibited broad peaks located in the UV and visible regions from 400 to 800 nm with optical band gaps at 1.55–2.10 eV, which fit near the wavelength of the maximum solar photon reflux. Electrochemical experiments displayed that the reversible p‐ and n‐doping processes of copolymers were partially reversible, and the proper HOMO/LUMO levels enabled a high photovoltaic open‐circuit voltage. As blended with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) as an electron acceptor in bulk heterojunction photovoltaic devices, narrow‐band‐gap polymers P1 ‐ P12 as electron donors showed significant photovoltaic performance which varied with the intramolecular donor‐acceptor interaction and their mixing ratios to PCBM. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the device of copolymer P12 produced the highest preliminary result having an open‐circuit voltage of 0.64 V, a short‐circuit current of 2.70 mA/cm2, a fill factor of 0.29, and an energy conversion efficiency of 0.51%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4285–4304, 2008  相似文献   

18.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

19.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
A new carbazole‐based electron accepting unit, 5‐(2,7‐dibromo‐9H‐carbazol‐9‐yl)benzo[a]phenazine (CBP), was newly designed and synthesized as the acceptor part of donor‐acceptor type low band‐gap polymers for polymer solar cells. The CBP was copolymerized with electron donating monomers such as benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(2‐octyl‐2‐thienyl)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) through Stille cross‐coupling polymerization, and produced two alternating copolymers, PBDT‐CBP and PBDTT‐CBP. An alternating copolymer (PBDT‐CBZ) consisted of 2,7‐dibromo‐9‐(heptadecan‐9‐yl)‐9H‐carbazole (CBZ) and BDT units was also synthesized for comparison. PBDT‐CBZ showed the maximum absorption at 430 nm and did not show absorption at wavelengths longer than 513 nm. However, CBP containing polymers (PBDT‐CBP and PBDTT‐CBP) showed a broad absorption between 300 and 850 nm due to the intramolecular charge transfer interaction between the electron donating and accepting blocks in the polymeric backbone. Bulk heterojunction photovoltaic devices were fabricated using the synthesized polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as electron acceptor. One of these devices showed a power conversion efficiency of 2.33%, with an open‐circuit voltage of 0.81 V, a short‐circuit current of 6.97 mA/cm2, and a fill factor (FF) of 0.41 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2354–2365  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号