首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of spreading of aqueous trisiloxane solutions over different solid hydrophobic substrates has been investigated experimentally. Two pure trisiloxane surfactants with 6 and 8 oxyethylene groups at concentrations close to the critical aggregation concentration and the critical wetting concentration were used in the spreading experiments. Three hydrophobic substrates (Teflon AF, Parafilm, and polystyrene) having different surface properties were used. It was found that the spreading behaviour depends on the hydrophobic/roughness properties of substrates. The rapid spreading and complete wetting were observed for both trisiloxane surfactant solutions at the critical wetting concentration on a substrate with a moderate hydrophobicity. For both highly hydrophobic Teflon AF and Parafilm substrates only partial wetting was found. The experiments have shown that the spreading behaviour over all substrates proceeds at two stages. At the critical aggregation concentration for both trisiloxanes on all substrates the time lag of the spreading was detected. The article is published in the original.  相似文献   

2.
Interest in wetting dynamics processes has immensely increased during the past 10-15 years. In many industrial and medical applications, some strategies to control drop spreading on solid surfaces are being developed. One possibility is that a surfactant, a surface-active polymer, a polyelectrolyte or their mixture are added to a liquid (usually water). The main idea of the paper is to give an overview on some dynamic wetting and spreading phenomena in the presence of surfactants in the case of smooth or porous substrates, which can be either moderately or highly hydrophobic surfaces based on the literature data and the authors own investigations. Instability problems associated with spreading over dry or pre-wetted hydrophilic surfaces as well as over thin aqueous layers are briefly discussed. Toward a better understanding of the superspreading phenomenon, unusual wetting properties of trisiloxanes on hydrophobic surfaces are also discussed.  相似文献   

3.
Superspreading driven by Marangoni flow   总被引:7,自引:0,他引:7  
The spontaneous spreading (called superspreading) of aqueous trisiloxane ethoxylate surfactant solutions on hydrophobic solid surfaces is a fascinating phenomenon with several practical applications. For example, the ability of trisiloxane ethoxylate surfactants to enhance the spreading of spray solutions on waxy weed leaf surfaces, such as velvetleaf (Abutilion theophrasti), makes them excellent wetting agents for herbicide applications. The superspreading ability of silicone surfactants has been known for decades, but its mechanism is still not well understood. In this paper, we suggest that the spreading of trisiloxane ethoxylates is controlled by a surface tension gradient, which forms when a drop of surfactant solution is placed on a solid surface. The proposed model suggests that, as the spreading front stretches, the surface tension increases (the surfactant concentration becomes lower) at the front relative to the top of the droplet, thereby establishing a dynamic surface tension gradient. The driving force for spreading is due to the Marangoni effect, and our experiments showed that the higher the gradient, the faster the spreading. A simple model describing the phenomenon of superspreading is presented. We also suggest that the superspreading behavior of trisiloxane ethoxylates is a consequence of the molecular configuration at the air/water surface (i.e. small and compact hydrophobic part), as shown by molecular dynamics modeling. We also found that the aggregates and vesicles formed in trisiloxane solutions do not initiate the spreading process and therefore these structures are not a requirement for the superspreading process.  相似文献   

4.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

5.
The effect that nanoparticles play in the spreading of nanofluids dynamically wetting and dewetting solid substrates is investigated experimentally, using 'drop shape' analysis technique to analyse aluminium-ethanol contact lines advancing and receding over hydrophobic Teflon-AF coated substrates. Results obtained from the advancing/receding contact line analysis show that the nanoparticles in the vicinity of the three-phase contact line enhance the dynamic wetting behaviour of aluminium-ethanol nanofluids for concentrations up to approximately 1% concentration by weight. Two mechanisms were identified as a potential reason for the observed enhancement in spreading of nanofluids: structural disjoining pressure and friction reduction due to nanoparticle adsorption on the solid surface. The observed 'lubricating effect' that the nanoparticles seem to be inducing is similar to the 'superspreading' effect for surfactant solutions spreading on hydrophobic surfaces, up to a concentration (weight) of approximately 1%, could be a result of the predicted enhanced wetting behaviour. Indeed, Trokhymchuk et al. [Langmuir, 2001, 17, 4940] observed a solid-like ordering of nanoparticles in the vicinity of the three-phase contact line, leading to an increased pressure in the fluid 'wedge'. This increased pressure leads to a pressure gradient which causes the nanofluids to exhibit enhanced wetting characteristics. Another possible cause for the observed increase in advancing/receding contact line velocity could be deposition of nanoparticles on the solid surface in the vicinity of the three-phase contact line resulting in the nanofluid effectively advancing over aluminium rather than Teflon-AF, or the contact line 'rolling' over nanoparticles at the three-phase contact line due to sphericity of nanoparticles. For either of these to be the case, the nanoparticle effect at the three-phase contact line would have to be enhanced for the lower concentration in the same way that it would have to be for the increased pressure in the fluid 'wedge'.  相似文献   

6.
The shapes and energies of drops on substrates patterned with either holes or posts are computed using Surface Evolver software. The holes and posts are cylindrical in shape and distributed in a 6-fold symmetric pattern. The wetting conditions are such that the liquid does not fill the holes and the interface between the drop and the substrate is composite, i.e., partly solid/liquid and partly liquid/vapor. The sequence of stable drop configurations with increasing volume is analyzed and provides, in part, an explanation for superhydrophobic drop spreading.  相似文献   

7.
Wetting of low-energy solid surfaces (polymers, hydrophobized glass) with aqueous solutions of binary mixtures of cationic and nonionic surfactants was investigated at molar fractions of the cationic surfactant of 0.2, 0.5, and 0.8. In a narrow concentration range, the non-additive effect of wetting was observed: wetting of the solid surfaces with solutions of the mixtures is better than that would be expected from the additive behavior of the components. The magnitude of the effect depends on the surface energy of the solid substrate, total surfactant concentration in a mixture, and molar fraction of the cationic component. The wetting effect of surfactant mixtures with respect to low-energy solid surfaces can be predicted using the surface tension isotherms.  相似文献   

8.
Review of non-reactive and reactive wetting of liquids on surfaces   总被引:5,自引:0,他引:5  
Wettability is a tendency for a liquid to spread on a solid substrate and is generally measured in terms of the angle (contact angle) between the tangent drawn at the triple point between the three phases (solid, liquid and vapour) and the substrate surface. A liquid spreading on a substrate with no reaction/absorption of the liquid by substrate material is known as non-reactive or inert wetting whereas the wetting process influenced by reaction between the spreading liquid and substrate material is known as reactive wetting. Young's equation gives the equilibrium contact angle in terms of interfacial tensions existing at the three-phase interface. The derivation of Young's equation is made under the assumptions of spreading of non-reactive liquid on an ideal (physically and chemically inert, smooth, homogeneous and rigid) solid, a condition that is rarely met in practical situations. Nevertheless Young's equation is the most fundamental starting point for understanding of the complex field of wetting. Reliable and reproducible measurements of contact angle from the experiments are important in order to analyze the wetting behaviour. Various methods have been developed over the years to evaluate wettability of a solid by a liquid. Among these, sessile drop and wetting balance techniques are versatile, popular and provide reliable data. Wetting is affected by large number of factors including liquid properties, substrate properties and system conditions. The effect of these factors on wettability is discussed. Thermodynamic treatment of wetting in inert systems is simple and based on free energy minimization where as that in reactive systems is quite complex. Surface energetics has to be considered while determining the driving force for spreading. Similar is the case of spreading kinetics. Inert systems follow definite flow pattern and in most cases a single function is sufficient to describe the whole kinetics. Theoretical models successfully describe the spreading in inert systems. However, it is difficult to determine the exact mechanism that controls the kinetics since reactive wetting is affected by a number of factors like interfacial reactions, diffusion of constituents, dissolution of the substrate, etc. The quantification of the effect of these interrelated factors on wettability would be useful to build a predictive model of wetting kinetics for reactive systems.  相似文献   

9.
The spreading of a partially wetting aqueous drop in air on a hydrophobic surface can be facilitated by the adsorption of surfactants from the drop phase onto the air/aqueous and aqueous/hydrophobic solid interfaces of the drop. At the contact line at which these interfaces meet, conventional surfactants with a linear alkyl hydrophobic chain attached to a polar group adsorb onto the surfaces, forming monolayers which remain distinct as they merge at the contact juncture. The adsorption causes a decrease in the interfacial tensions and reduction in the contact angle but the angle remains above zero so the drop is still nonwetting. Trisiloxane surfactants with a T-shaped geometry in which the hydrophobic group is composed of a trisiloxane oligomer with a polar group attached at the center of the chain can give rise to a zero contact angle at the contact line and complete wetting (superspreading). Experimental evidence suggests the adsorption of the T-shaped molecule, in addition to significantly decreasing the tensions of the interfaces (relative to the conventional surfactants), promotes the formation of a precursor film consisting of a surfactant bilayer at the contact line which facilitates the spreading. The aim of this study is to use molecular dynamics to examine if the T-shaped structure can promote spreading by the formation of a bilayer and to contrast this case with that of the linear chain surfactant where complex assembly does not occur. The simulation models the solvent as a monatomic liquid, the substrate as a particle lattice, and the surfactants as united atom structures, with all interactions given by Lennard-Jones potentials. We start with a base case in which the solvent partially wets a substrate comprised of a lattice of particles. We demonstrate that adsorbed T-shaped surfactant monolayers can, when the interaction between the solvent and the hydrophile particles is strong enough, assemble into a bilayer, allowing the drop to extend to a thin planar film. In the case of the flexible linear chain surfactant, there is no interaction between the monolayers on the two interfaces in the case of a strong hydrophile-solvent interaction and less coordination for a weaker interaction. In either case, the monolayers remain distinct, as the surfactant only marginally improves wetting.  相似文献   

10.
This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose.  相似文献   

11.
The spreading of drops of a non-Newtonian liquid (Ostwald-de Waele liquid) over horizontal solid substrates is theoretically investigated in the case of complete wetting and small dynamic contact angles. Both gravitational and capillary regimes of spreading are considered. The evolution equation deduced for the shape of the spreading drops has self-similar solutions, which allows obtaining spreading laws for both gravitational and capillary regimes of spreading. In the gravitational regime case of spreading the profile of the spreading drop is provided.  相似文献   

12.
Inertial spreading occurs at the onset of a droplet wetting a solid; for low viscosity, highly wetting liquids, very high contact line velocities have been observed during this regime. Initial wetting kinetics are so rapid that careful experimental exploration of this phenomenon has only occurred over the past ~ 10 years. Herein, we review recent experimental and computational investigations into inertial spreading. We highlight results and discussion from literature that bear out an initially surprising conclusion: even nanometer scale drops exhibit a regime of early stage wetting kinetics that are well described as inertia dominated. Given this, some focus is placed on reviewing results from atomic scale simulations of inertial wetting and how they can be used to battle the lack of understanding regarding fundamental mechanisms of rapid contact line advancement. To bolster this discussion, new results are also presented from molecular dynamics simulations exploring inertial wetting in metallic systems. It is demonstrated that atomic scale simulations can reveal nanoscale size effects on inertial wetting and that, after accounting for these nanoscale effects, inertial regime spreading data for nanodrops are fully explained by otherwise continuum fluid mechanics theory. Data obtained are thus used to explore the role of order in liquid films near solid surfaces in controlling contact line advancement. In exploring the structure of an ordered liquid layer adjacent to the solid surface that undergoes significant slip during inertial spreading, it is demonstrated that a tensile strain gradient manifests in the layer as the film edge is approached.  相似文献   

13.
The macroscopic flow geometry has long been assumed to have little impact on dynamic wetting behavior of liquids on solid surfaces. This study experimentally studied both spontaneous spreading and forced wetting of several kinds of Newtonian and non-Newtonian fluids to study the effect of the macroscopic flow geometry on dynamic wetting. The relationship between the dynamic contact angle, θ(D), and the velocity of the moving contact line, U, indicates that the macroscopic flow geometry does not influence the advancing dynamic wetting behavior of Newtonian fluids, but does influence the advancing dynamic wetting behavior of non-Newtonian fluids, which had not been discovered before.  相似文献   

14.
Wetting and spreading phenomena are the most important parameters for understanding of froth flotation practice. The wetting and spreading of fluids on the solid surface should be considered in the high efficiency flotation process. These phenomena involve surface tension forces, contact line dynamics, surface roughness and heterogeneity, contact angles, bubble–particle interactions and other factors. This review highlights the various concepts of contact angles and well-known equations in this respect and compares these equations. Based on this review, flotation selectivity and efficiency are highly dependent on solid–liquid contact angles and collision, collection, attachment, and stability efficiency could be predicted by wetting and spreading roles. In order to control flotation performance, efforts should be made to determine wetting characteristic of the flotation process. It is imperative that an improved understanding of wetting and spreading phenomena in the phase's interfaces will provide an improved and efficient flotation practice. It is proposed that future research should focus on the scientific and engineering aspect of wetting and spreading phenomena on flotation and on the development of a method to enhance flotation performance by controlling these phenomena.  相似文献   

15.
Wetting and adsorption modification of polystyrene surface with aqueous solutions of F68-cationic surfactant mixtures are studied. The synergism of wetting is revealed. It is established that the degree of synergism upon wetting is determined by the synergism of surfactant adsorption on a solid surface and peculiarities of the formation of mixed adsorption layers of surfactants. It is shown that low-molecular-weight cationic surfactants can be used to increase the efficiency of the modification of polymer surfaces with Pluronics.  相似文献   

16.
Fluorosurfactants are the most effective compounds to lower the surface tension of aqueous solutions, but their wetting properties as related to low energy hydrocarbon solids are inferior to hydrocarbon trisiloxane surfactants, although the latter demonstrate higher surface tension in aqueous solutions. To explain this inconsistency available data on the adsorption of fluorosurfactants on liquid/vapour, solid/liquid and solid/vapour interfaces are discussed in comparison to those of hydrocarbon surfactants. The low free energy of adsorption of fluorosurfactants on hydrocarbon solid/water interface should be of a substantial importance for their wetting properties.  相似文献   

17.
Flux-assisted wetting and spreading of Al on TiC   总被引:1,自引:0,他引:1  
The effect of a K-Al-F-based flux on the spreading of Al on TiC, at temperatures up to 900 degrees C, in Ar and in air has been studied. Whilst obtuse contact angles were observed without flux, the flux facilitated rapid spreading to a perfect wetting condition, in both Ar and in air. The atmosphere was found to have a weak effect on the spreading kinetics as the liquid flux provides a locally protective atmosphere by spreading over the TiC surface and also on the solid surface of Al. The flux dissolves the aluminium oxide, covering Al, so that when Al melts, and the oxide layer has been removed or weakened, intimate contact occurs between liquid Al and the TiC substrate facilitating spontaneous spreading and instantaneous wetting of liquid Al on TiC. Since flux-assisted spreading is very rapid and occurs without the formation of a reaction layer at the Al/TiC interface, this process is very different to the reactive wetting behaviour previously reported in the Al-TiC system.  相似文献   

18.
We explore the equilibrium wetting behavior and precursor film growth in pure and alloy metallic systems. The systems exhibit equilibrium "pseudopartial" wetting, that is, a thin film in equilibrium with a nonzero contact angle in both liquid and solid states. The film spreading kinetics clearly indicates a diffusive transport mechanism. The alloying has only a small impact on the equilibrium wetting properties but strongly affects the transport during the growth of the precursor film.  相似文献   

19.
Super-spreading trisiloxane surfactants are a class of amphiphiles which consist of nonpolar trisiloxane headgroups ((CH3)3-Si-O)2-Si(CH3)(CH2)3-) and polar parts composed of between four and eight ethylene oxides (ethoxylates, -OCH2CH2-). Millimeter-sized aqueous drops of trisiloxane solutions at concentrations well above the critical aggregate concentration spread rapidly on very hydrophobic surfaces, completely wetting out at equilibrium. The wetting out can be understood as a consequence of the ability of the trisiloxanes at the advancing perimeter of the drop to adsorb at the air/aqueous and aqueous/hydrophobic solid interfaces and to reduce considerably the tensions of these interfaces, creating a positive spreading coefficient. The rapid spreading can be due to maintaining a positive spreading coefficient at the perimeter as the drop spreads. However, the air/aqueous and solid/aqueous interfaces at the perimeter are depleted of surfactant by interfacial expansion as the drop spreads. The spreading coefficient can remain positive if the rate of surfactant adsorption onto the solid and fluid surfaces from the spreading aqueous film at the perimeter exceeds the diluting effect due to the area expansion. This task is made more difficult by the fact that the reservoir of surfactant in the film is continually depleted by adsorption to the expanding interfaces. If the adsorption cannot keep pace with the area expansion at the perimeter, and the surface concentrations become reduced at the contact line, a negative spreading coefficient which retards the drop movement can develop. In this case, however, a Marangoni mechanism can account for the rapid spreading if the surface concentrations at the drop apex are assumed to remain high compared to the perimeter so that the drop is pulled out by the higher tension at the perimeter than at the apex. To maintain a high apex concentration, surfactant adsorption must exceed the rate of interfacial dilation at the apex due to the outward flow. This is conceivable because, unlike that at the contact line, the surfactant reservoir in the liquid at the drop center is not continually depleted by adsorption onto an expanding solid surface. In an effort to understand the rapid spreading, we measure the kinetic rate constants for adsorption of unaggregated trisiloxane surfactant from the sublayer to the air/aqueous surface. The kinetic rate of adsorption, computed assuming the bulk concentration of monomer to be uniform and undepleted, represents the fastest that surfactant monomer can adsorb onto the air/aqueous surface in the absence of direct adsorption of aggregates. The kinetic constants are obtained by measuring the dynamic tension relaxation as trisiloxanes adsorb onto a clean pendant bubble interface. We find that the rate of kinetic adsorption is only of the same order as the area expansion rates observed in superspreading, and therefore the unaggregated flux cannot maintain very high surface concentrations at the air/aqueous interface, either at the apex or at the perimeter. Hence in order to maintain either a positive spreading coefficient or a Marangoni gradient, the surfactant adsorptive flux needs to be augmented, and the direct adsorption of aggregates (which in the case of the trisiloxanes are bilayers and vesicles) is suggested as one possibility.  相似文献   

20.
The adsorption between a liquid drop and a micro-particle in an air or an air bubble and a micro-particle in water is dominated by liquid-solid or air-solid interfacial tension and wetting area of the liquid or air on the particle surface. The wetting area is determined by the spreading of the liquid drop or the bubble on the micro-particle. To explore this spreading, a wetting model of a fluid phase on a spherical particle was built. According to the theoretical results, the contact angle is constant when a fluid phase spreads on a spherical solid surface; the micro-particle can not submerge under a fluid when only interfacial tensions are involved and the wetting is not a complete wetting. The corresponding experiments were performed to confirm the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号