首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
An in situ electron paramagnetic resonance (EPR) study has been carried out for anatase (Hombikat UV100) and rutile TiO(2) nanoparticles at liquid helium (He) temperature (4.2 K) under UV irradiation. Rutile titania was synthesized by ultrasonic irradiation with titanium tetrachloride (TiCl(4)) as the precursor. XRD and Raman results evidence the crystallinity of titania phases. The nature of trapped electrons and holes has been investigated by EPR spectroscopy under air and vacuum conditions. Illumination of TiO(2) powder (anatase and rutile) at 4.2 K resulted in the detection of electrons being trapped at Ti(4+) sites within the bulk and holes trapped at lattice oxide ions at the surface. The stability of electron traps was very sensitive to temperature in both phases of TiO(2). The annealing kinetics of the EPR detected radicals has been studied from 4.2 K to ambient temperature and also for calcined titania particles from 523 to 1273 K.  相似文献   

2.
The kinetics of the formation of gold nanoparticles on the surface of pre-illuminated TiO(2) have been investigated using stopped-flow technique and steady state UV/Vis spectroscopy. Excess electrons were loaded on the employed nanosized titanium dioxide particles by UV-A photolysis in the presence of methanol serving as hole scavenger, stored on them in the absence of oxygen and subsequently used for the reduction of Au(III) ions. The formation of gold nanoparticles with an average diameter of 5 nm was confirmed after mixing of the TiO(2) nanoparticles loaded with electrons with aqueous solution of tetrachloroaureate (HAuCl(4)) by their surface plasmon absorbance band at 530 nm, as well as by XRD and HRTEM measurements. The rate of formation of the gold nanoparticles was found to be a function of the concentration of the gold ions and the concentration of the stored electrons, respectively. The effect of PVA as a stabilizer of the gold nanoclusters was also studied. The observed kinetic behavior suggests that the formation of the gold nanoparticles on the TiO(2) surface is an autocatalytic process comprising of two main steps: 1) Reduction of the gold ions by the stored electrons on TiO(2) forming gold atoms that turn into gold nuclei. 2) Growth of the metal nuclei on the surface of TiO(2) forming the gold particles. Interestingly, at higher TiO(2) electron loading the excess electrons are subsequently transferred to the deposited gold metal particles resulting in "bleaching" of their surface plasmon band. This bleaching in the surface plasmon band is explained by the Fermi level equilibration of the Au/TiO(2) nanocomposites. Finally, the reduction of water resulting in the evolution of molecular hydrogen initiated by the excess electrons that have been transferred to the previously formed gold particles has also been observed. The mechanism of the underlying multistep electron-transfer process has been discussed in detail.  相似文献   

3.
Thin films of TiO2 (anatase) nanoparticles are assembled at an electrode surface via a layer-by-layer deposition process employing phytic acid, pyromellitic acid, or flavin adenine dinucleotide (FAD) as molecular binders. With all three types of binders, layers of typically 30 nm thickness are formed each deposition cycle. FAD as an electrochemically active component immobilized at the surface of the TiO2 particles is reduced to FADH2 and reoxidized in a chemically reversible two electron-two proton redox process. Two distinct voltammetric signals are observed for the immobilized FAD redox system associated with (i) hopping of electrons at the TiO2 surface (reversible) and (ii) conduction of electrons through the TiO2 assembly (irreversible). The conduction of electrons through the TiO2 assembly is possible by diffusion over considerable distances as well as through a "spacer" layer of TiO2 phytate. An order of magnitude (upper limit) estimate for the diffusion coefficient of electrons through TiO2 phytate, D(electron) approximately 10(-6) m(2) s(-1), is obtained from voltammetric data. Finally, it is demonstrated that the calcination of TiO2 assemblies causes dramatic changes in the electron transfer kinetics for the immobilized FAD/FADH2 redox system.  相似文献   

4.
Visible-light irradiation (λ > 450 nm) of gold nanoparticles loaded on a mixture of anatase/rutile TiO(2) particles (Degussa, P25) promotes efficient aerobic oxidation at room temperature. The photocatalytic activity critically depends on the catalyst architecture: Au particles with <5 nm diameter located at the interface of anatase/rutile TiO(2) particles behave as the active sites for reaction. This photocatalysis is promoted via plasmon activation of the Au particles by visible light followed by consecutive electron transfer in the Au/rutile/anatase contact site. The activated Au particles transfer their conduction electrons to rutile and then to adjacent anatase TiO(2). This catalyzes the oxidation of substrates by the positively charged Au particles along with reduction of O(2) by the conduction band electrons on the surface of anatase TiO(2). This plasmonic photocatalysis is successfully promoted by sunlight exposure and enables efficient and selective aerobic oxidation of alcohols at ambient temperature.  相似文献   

5.
Ultraviolet light-induced electron-hole pair excitations in anatase TiO(2) powders were studied by a combination of electron paramagnetic resonance and infrared spectroscopy measurements. During continuous UV irradiation in the mW.cm(-2) range, photogenerated electrons are either trapped at localized sites, giving paramagnetic Ti(3+) centers, or remain in the conduction band as EPR silent species which may be observed by their IR absorption. Using low temperatures (90 K) to reduce the rate of the electron-hole recombination processes, trapped electrons and conduction band electrons exhibit lifetimes of hours. The EPR-detected holes produced by photoexcitation are O(-) species, produced from lattice O(2-) ions. It is found that under high vacuum conditions, the major fraction of photoexcited electrons remains in the conduction band. At 298 K, all stable hole and electron states are lost from TiO(2). Defect sites produced by oxygen removal during annealing of anatase TiO(2) are found to produce a Ti(3+) EPR spectrum identical to that of trapped electrons, which originate from photoexcitation of oxidized TiO(2). Efficient electron scavenging by adsorbed O(2) at 140 K is found to produce two long-lived O(2)(-) surface species associated with different cation surface sites. Reduced TiO(2), produced by annealing in vacuum, has been shown to be less efficient in hole trapping than oxidized TiO(2).  相似文献   

6.
A facile hydrothermal method has been developed and shown to be effective for the preparation of TiO(2)-graphene nanocomposite. The as-prepared nanocomposite was characterized using FT-IR spectroscopy, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TiO(2)-graphene modified glassy carbon electrode (GCE) exhibited remarkable electron transfer kinetics and electrocatalytic activity toward the oxidation of dopamine (DA). Furthermore, the oxidation of common interfering agent such as ascorbic acid (AA) was significantly suppressed at this modified electrode, which resulted in good selectivity and sensitivity for electrochemical sensing of DA. These results demonstrate that the TiO(2)-graphene hybrid material has promising potential applications in electrochemical sensors and biosensors design.  相似文献   

7.
The dependence of the electron transport and recombination dynamics on the internal surface area of mesoporous nanocrystalline TiO2 films in dye-sensitized solar cells was investigated. The internal surface area was varied by altering the average particle size in the films. The scaling of the photoelectron density and the electron diffusion coefficient at short circuit with internal surface area confirms the results of a recent study (Kopidakis, N.; Neale, N. R.; Zhu, K.; van de Lagemaat, J.; Frank, A. J. Appl. Phys. Lett. 2005, 87, 202106) that transport-limiting traps are located predominately on the surfaces of the particles. The recombination current density was found to increase superlinearly (with an exponent of 1.40 +/- 0.12) with the internal surface area. This result is at odds with the expected linear dependence of the recombination current density on the surface area when only the film thickness is increased. The observed scaling of the recombination current density with surface area is consistent with recombination being transport-limited. Evidence is also presented confirming that photoinjected electrons recombine with redox species in the electrolyte via surface states rather than from the TiO2 conduction band.  相似文献   

8.
Preparation processes for Pt-deposited TiO(2) (Pt/TiO(2)) by the synthesis of Pt nanoparticles and their deposition were pursued by transmission electron microscopy, extended X-ray absorption fine structure, UV-vis spectroscopy, and Fourier transform infrared spectroscopic studies. Colloidal dispersions of Pt particles stabilized by poly(N-vinyl-2-pyrrolidone) (PVP) were photochemically synthesized in aqueous ethanol solution. The average diameter of Pt particles was estimated to be 2.0 +/- 0.5 nm, which was almost unchanged by changing the reducing agent from ethanol to methanol and 2-propanol. The PVP-stabilized Pt particles were distributed over a TiO(2) surface only by mixing the Pt colloidal dispersions and TiO(2). CO was chemically coordinated on the Pt particles on a TiO(2) surface after heat treatment was carried out in an O(2) flow at 673 K to completely remove the residual PVP on Pt/TiO(2). Hydrogen reduction at 473 K did not increase the amount of CO adsorbed on Pt sites. The Pt/TiO(2) catalyst after the oxidation treatment showed higher activity for CO photooxidation than that obtained for pure TiO(2) catalyst. The CO photooxidation rate was not unchanged by the H(2) reduction.  相似文献   

9.
The formation of the electronic structure of the surface of complex copper-cerium oxide catalysts with different copper concentrations was studied using the exoemission methods at different stages of preparation. The introduction of copper enhances the emissivity of CeO2, and the number of charges emitted from the catalyst surface exceeds the emission activity of the starting CeO2 and NuO components. The synergism phenomenon in exoemission is compared with synergism in the catalysis of CO oxidation by these systems. The problem of electron interactions between the components of the complex oxides is discussed. The electron interactions are caused by the electron transitions at the interface and result in an increase in both the emission of weakly bound electrons and catalytic activity in the oxidation of CO.  相似文献   

10.
The adsorption of riboflavin on the surface of TiO(2) colloidal particles and the electron transfer process from its singlet excited state to the conduction band of TiO(2) were examined by absorption and fluorescence quenching measurements. The apparent association constants (K(app)) were determined. The quenching mechanism is discussed involving electron transfer from riboflavin to TiO(2).  相似文献   

11.
通过反胶束和静电自组装方法制备了一种类蛋结构的可磁分离光催化剂纳米材料SiO2@NiFe2O4@TiO2(TSN), 这种光催化剂对甲基橙废水有较好的降解效果, 并显示出了超顺磁性, 通过外加磁场方便地实现催化剂在水中的分离与回收. 该光催化剂纳米球的X射线衍射, TEM和FTIR结果表明, 铁酸镍纳米粒子被包裹在SiO2内, 形成SiO2@NiFe2O4(SN)纳米球载体, 纳米TiO2颗粒组装在SN表面, 形成TiO2光催化壳层. 利用甲基橙的降解考察了光催化剂纳米球的活性, 结果表明, 在NiFe2O4和TiO2之间包覆一层无定形的SiO2可以显著提高光催化剂纳米球TSN的催化活性.  相似文献   

12.
掺Sn的纳米TiO2表面光生束缚激子的验证及其特性   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了不同掺杂Sn的TiO2纳米粒子,并主要利用表面光电压谱(SPS)和电场诱导表面光电压谱(EFISPS)对样品进行了表征,重点探讨了焙烧温度和掺Sn量对TiO2光生电荷性质的影响.同时揭示了样品结构与表面光生束缚激子的关系及其特性.结果表明:与束缚激子相关的光伏响应只在含有金红石相的TiO2样品中出现,且在混晶相中表现得更加显著.掺杂适量Sn不仅提高了纳米TiO2的与带带跃迁相关的SPS响应强度,同时也使与束缚激子相关的SPS响应明显增强.  相似文献   

13.
Titanium dioxide semiconductor systems with excellent stability of photo-electric chemistry, no poison, cheap, and high separation efficiency of photogenerated charges, consequently, high photocatalytic activity, have been the subject of extensive investigation because of their promise in the photovoltaic[1], photocatalytic[2], and battery applications[3]. The efficiencies of these materials in photovoltaic and photocatalytic applications depend strongly upon the trapping and recombination energetics, i.e., electrons and holes and the conversion of light. Nanosized TiO2 particles present much higher photocatalytic activity due to larger effective surface areas, higher densities of. surface states, shorter distance of photogenerated charges from inner to the surfaces of TiO2 particles resulting in higher separation efficiency of electron-hole pairs, and quantum size effect.  相似文献   

14.
Mahshid S  Li C  Mahshid SS  Askari M  Dolati A  Yang L  Luo S  Cai Q 《The Analyst》2011,136(11):2322-2329
A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results.  相似文献   

15.
Based on previous results which showed that quinohemo-protein alcohol dehydrogenase (QH-ADH) entrapped within polypyrrole is able to directly transfer electrons via the conducting polymer to the electrode surface, the electron-transfer properties of this multi-cofactor enzyme adsorbed and covalently-bound to self-assembled thiol monolayers and bare electrode surfaces has been investigated more closely. While the dissolved enzyme is able to transfer electrons to the electrode via heme c as well as via the more deeply buried PQQ (fast adsorption-chemical reaction-desorption mechanism), an orientation of adsorbed QH-ADH on hydrophobic electrode surfaces, as well as of adsorbed and covalently bound QH-ADH on negatively-charged thiol monolayers could be observed. In these cases the heme c units are pointing towards the electrode surfaces resulting in an optimised direct ET rate.  相似文献   

16.
Identification of charge transfer and trapping sites on semiconducting oxide surfaces is of fundamental importance in furthering the field of heterogeneous photocatalysts. Using scanning tunneling microscopy, electron energy loss spectroscopy, and photodesorption, we observed both electron trapping and hole transfer events on the (110) surface of TiO2 rutile. UV irradiation of a saturated monolayer of trimethyl acetate (TMA) on TiO2(110) at room temperature resulted in hole transfer to the carboxylate group, followed by (CH3)3C-COO bond cleavage and desorption of CO2 and isobutene/isobutane. Hole transfer to TMA proceeded in the absence of a gas-phase electron scavenger (which is typically O2) because the accompanying photogenerated electrons could be trapped at the surface as Ti3+ cations bound to bridging OH groups. The extent of electron trapping, gauged by electron spectroscopy, correlated directly with the yields of photodesorption fragments resulting from the hole transfer channel. Charge at the Ti3+ sites was titrated in the dark via a reaction between O2 and the Ti3+-OH groups.  相似文献   

17.
纳米TiO2/碳化树脂复合催化剂的合成及其光催化性能研究   总被引:10,自引:0,他引:10  
利用一种简单、快速的方法合成了纳米TiO2/碳化树脂(B)复合催化剂,对其组成、结构、尺寸及其光催化性能进行了表征.结果表明,该复合材料为由碳、氢、氧和钛等4种元素组成的纳米材料,尺寸约30nm,其中Ti和O的堆积结构为锐钛矿型;在该复合材料中,B为具有活性基团和不同长度碳-碳共轭链的大分子,且与TiO2之间存在着某种化学作用,复合材料所具有的特殊电子结构不仅使其能吸收紫外-可见区的全程光波,而且对光生电荷具有很高的分离能力,从而表现出较高的光催化活性.  相似文献   

18.
The kinetics and the mechanism of various multielectron transfer reactions initiated by stored electrons in TiO(2) nanoparticles have been investigated employing the stopped flow technique. Moreover, the optical properties of the stored electrons in the TiO(2) nanoparticles have been studied in detail following the UV (A) photolysis of deaerated aqueous suspensions of TiO(2) nanoparticles in the presence of methanol. The reduction of common electron acceptors that are often present in photocatalytic systems such as O(2), H(2)O(2), and NO(3)(-) has been investigated. The experimental results clearly show that the stored electrons reduce O(2) and H(2)O(2) to water by multielectron transfer processes. Moreover, NO(3)(-) is reduced via the transfer of eight electrons evincing the formation of ammonia. On the other hand, the reduction of toxic metal ions, such as Cu(II), has been studied mixing their respective anoxic aqueous solutions with those containing the electrons stored in the TiO(2) particles. A two-electron transfer is found to occur, indicating the reduction of the copper metal ion into its non toxic metallic form. Other metal ions, such as Zn(II) and Mn(II), could not be reduced by TiO(2) electrons, which is readily explained on the bases of their respective redox potentials. The underlying reaction mechanisms are discussed in detail.  相似文献   

19.
CuS/TiO2纳米管异质结阵列的制备及光电性能   总被引:1,自引:0,他引:1  
利用水热反应制备了CuS/TiO2纳米管异质结阵列,采用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线衍射谱(XRD)等手段表征了异质结阵列的表面形貌和晶体结构.电流-电压曲线结果表明,CuS/TiO2纳米管异质结阵列具有明显的整流效应.根据表面光电压谱和相位谱,在376~600 nm之间,CuS/TiO2纳米管异质结阵列表现为p型半导体特征,电子在表面聚集;在300~376 nm之间表现为n型半导体特征,空穴在表面聚集;在376 nm处异质结阵列的表面光伏响应为零.CuS/TiO2和CuS/ITO之间界面电场的不同导致异质结在不同波长范围内表面电荷聚集的差异.光电化学性能测试发现,以CuS/TiO2纳米管异质结阵列为光阳极组成的光化学太阳电池,在大气质量AM 1.5G,100 mW/cm2标准光强作用下具有0.4%的光电转换能力.  相似文献   

20.
Photocatalytic reaction of a nitrite ion in aqueous suspensions of bare and metal-loaded TiO(2) particles was examined without electron and hole scavengers under irradiation of UV light. In the bare TiO(2) system, disproportionation of NO(2)(-) to N(2) (or N(2)O) and NO(3)(-) with nitrogen balance (NB) and redox balance (ROB) close to unity within experimental errors was observed, although the reaction was slow. Palladium (Pd)-loaded TiO(2) particles exhibited an extraordinarily large rate of disproportionation of NO(2)(-) in their aqueous suspension, i.e. NO(2)(-) was almost completely converted to N(2) (or N(2)O) and NO(3)(-) even after only 3 h of photoirradiation, both the values of NB and ROB being close to unity. This result suggests that Pd loaded on TiO(2) particles acted as storage sites for photogenerated electrons and effectively transferred the electrons to NO(2)(-) and, therefore, that the reduction process in the photocatalytic disproportionation of NO(2)(-) was accelerated by Pd loaded on TiO(2). Effects of the amount of Pd and pH of the suspension on the reaction rate were also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号