首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positive and negative streamer discharges in atmospheric pressure air were generated in a shielded sliding discharge reactor at operating voltages as low as 5 kV for a gap length of 1.6 cm. In this reactor, electrodes are placed on top of a dielectric layer and one of the electrodes, generally the one on ground potential, is connected to a conductive layer on the opposite side of the dielectric. The energy per pulse, at the same applied voltage, was more than a factor of seven higher than that of pulsed corona discharges, and more than a factor of two higher than that of sliding discharges without a shield. It is explained on the basis of enhanced electric fields, particularly at the plasma emitting electrode. Specific input energy required for 50 % removal from ~1,000 ppm initial NO could be reduced to ~18 eV/molecule when ozone in the exhaust of negative streamers was utilized. For sliding discharges and pulsed corona discharges this value was ~25 eV/molecule and it was 35 eV/molecule for positive shielded sliding discharges. Also, the ozone energy yield from dry air was up to ~130 g/kW h and highest for negative streamer discharges in shielded sliding discharge reactors. The high energy density in negative streamer discharges in the shielded discharge reactor at the relatively low applied voltages might not only allow expansion of basic studies on negative streamers, but also open the path to industrial applications, which have so far been focused on positive streamer discharges.  相似文献   

2.
Shielded sliding discharges are nanosecond streamer discharges which develop along a dielectric between metal foil electrodes, with one of the foils extended over the entire rear of the dielectric layer. The electrode configuration not only allowed rearranging discharges in parallel due to the decoupling effect of the metal layer, but also to modify the electric field distribution in such a way that components normal to the surface are enhanced, leading to an increased energy density in the discharge plasma. By varying the electrode gap, the applied voltage, and the repetition rate, it is shown that by keeping the average electric field constant, the discharge voltage can be reduced from tens of kV to values on the order of a few kV, but only at the expense of a reduced energy density of the plasma. Varying the repetition rate from 20 to 500 Hz resulted in a slightly reduced energy per pulse, likely caused by residual charges on the dielectric surface. Measurements of the NO conversion to NO2 and ozone synthesis in dry air showed that the conversion is only dependent on the energy density of the discharge plasma. Although reducing the pulse voltage from the tens of kV range to that of few kV, and possibly even lower, causes a reduction in energy density, this loss can be compensated for by increasing the electrode gap area. This and the possibility to form discharge arrays allows generating large volume discharge reactors for environmental applications, at modest pulsed voltages.  相似文献   

3.
We present an experimental study of lean mixture ignition by nanosecond repetitively pulsed (NRP) discharges. The plasma is created in a lean propane/air mixture at pressure up to 10 bar and equivalence ratio 0.7, premixed in a constant volume vessel. We characterize the initial spark radius, the ignition kernel development and the flame propagation as a function of pressure (up to 10 bar) and the pulse energy (1–6 mJ per pulse). Comparisons with a conventional igniter show that better results are obtained with NRP discharges in terms of flame propagation speed, in particular at high pressure, due to the increased wrinkling of the flame front that is induced by NRP discharges.  相似文献   

4.
Dielectric-barrier discharges (silent discharges) are used on a large industrial scale. They combine the advantages of non-equilibrium plasma properties with the ease of atmospheric-pressure operation. A prominent feature is the simple scalability from small laboratory reactors to large industrial installations with megawatt input powers. Efficient and cost-effective all-solid-state power supplies are available. The preferred frequency range lies between 1 kHz and 10 MHz, the preferred pressure range between 10 kPa and 500 kPa. Industrial applications include ozone generation, pollution control, surface treatment, high power CO2 lasers, ultraviolet excimer lamps, excimer based mercury-free fluorescent lamps, and flat large-area plasma displays. Depending on the application and the operating conditions the discharge can have pronounced filamentary structure or fairly diffuse appearance. History, discharge physics, and plasma chemistry of dielectric-barrier discharges and their applications are discussed in detail.  相似文献   

5.
Atmospheric pressure air plasma discharges generate potential antimicrobial agents, such as nitrogen oxides and ozone. Generation of nitrogen oxides was studied in a DC-driven self-pulsing (1–10 kHz) transient spark (TS) discharge. The precursors of NOx production and the TS characteristics were studied by nanosecond time-resolved optical diagnostics: a photomultiplier module and a spectrometer coupled with fast intensified camera. Thanks to the short (~10–100 ns) high current (>1 A) spark current pulses, highly reactive non-equilibrium plasma is generated. Ozone was not detectable in the TS, probably due to higher gas temperature after the short spark current pulses, but the NOx production rate of ~7 × 1016 molecules/J was achieved. The NO2/NO ratio decreased with increasing TS repetition frequency, which is related to the complex frequency-dependent discharge properties and thus changing NO2/NO generating mechanisms. Further optimization of NO2 and NO production to improve the biomedical and antimicrobial effects is possible by modifying the electric circuit generating the TS discharge.  相似文献   

6.
A novel method for the removal of soot from a diesel particulate filter using pulsed electric discharges is presented. High voltage pulses of between 18 and 25 kV of nano to microsecond duration and with pulse energies of typically 100–200 mJ were applied to the filter via a series spark gap. Initial slow erosion of the soot layer proceeds via the formation of microdischarges. Subsequent spark discharges removed the accumulated soot more effectively from a larger filter volume. Average soot removal rates of ~0.1–0.2 g/min were achieved at 50 Hz breakdown frequency by optimizing both electrode geometry and breakdown voltage. On-engine long term testing of the technology showed soot removal by pulsed discharge to be reliable, efficient and uniform; a total of 100 g of soot was deposited and removed over 18 filter regeneration cycles.  相似文献   

7.
Scaling down the size of plasma discharges would reduce the amount of gases, liquids, and consumables required, which in turn would decrease the operating costs. Nevertheless, the application of a specialized plasma generator for microhollow cathode discharges (MHCD) and dielectric barrier discharges are driven with commercially available power sources. Those generators are bulky and expensive and their overall efficiency is poor. This work develops and explains several circuit topologies and design hints to excite MHCD and dielectric barrier discharge (DBD) plasmas with respect to its system with as low as possible input power in a very efficient way. Benefits in sensitivity and life expectancy are shown. The generator for the MHCD needs voltages up to 7 V and consumes up to 5 W. The DBD generator has an input power of 3 W and produces a fast rising output pulse up to 9 kV, which has a time duration of 2 µs. These low-power circuits offer the operation with batteries.  相似文献   

8.
Plasmas in saline solution driven by a repetitive bipolar pulsed power source are studied. We use a negative pulse to generate electrolytic gas with a controllable amount, followed by a positive pulse to ignite the plasma. With an increase in the negative voltage pulse amplitude from 0 to ?80 V, we observed an increase in the amount of electrolytic gas (hydrogen) formation, resulting in a reduced time delay, from 65 to 6 μs, required to ignite the plasma upon the onset of the positive pulse. A decrease, from 1.75 to 1.0 A, in the peak currents within the positive voltage pulse is also observed. Optical emission spectroscopy shows that the intensity ratio of the Hα (656 nm) to Na (588 nm) emission lines increases from zero to 0.0035. These observations can be well explained by the increase in the gas coverage on the electrode surface and the change in the gas composition within which the plasma is ignited with the application of the negative pulse.  相似文献   

9.
Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas with bare metallic electrodes have promising prospects in the fields of plasma-aided etching, deposition, disinfection and sterilization, etc. In this paper, an induced gas discharge approach is proposed for obtaining the RF, atmospheric-pressure, γ-mode, glow discharges with pure nitrogen or air as the primary plasma-working gas using bare metallic electrodes. The discharge characteristics, including the discharge mode, the breakdown voltage and discharge voltage for sustaining α mode and/or γ mode discharges, of the RF APGD plasmas of helium, argon, nitrogen, air or their mixtures using a planar-type plasma generator are presented in this study. The uniformity (no filaments) of the discharges is confirmed by the images taken by an iCCD with a short exposure time (10 ns). The effects of different gap spacings and electrode materials on the discharge characteristics, the variations of the sheath thickness and the electron number density are also studied in this paper.  相似文献   

10.
A nonthermal plasma system based on simultaneously formed positive and negative streamers on either side of a dielectric layer is described. The coupled sliding discharge (CSD) reactor based on this concept was found to be scalable by stacking and operating multiple electrode assemblies in parallel, similarly to the shielded sliding discharge (SSD) reactor reported earlier. A comparison of the two systems showed that although the energy density in the CSD reactor was lower, the efficiency for NO conversion and ozone synthesis from dry air were significantly higher. The energy cost for 50 % NO removal was ~30 eV/molecule compared to ~60 eV/molecule in the case of the SSD under the same conditions of 330 ppm initial NO concentration in air. The energy cost decreased to ~12 eV/molecule in both cases when NO was mixed with plasma-activated air at the outlet of the reactor to utilize ozone for NO conversion i.e., indirect plasma treatment. The energy yield for ozone generation from dry air was at ~70 g/kWh, comparable in both systems. The results show that the concept of a CSD, as that of SSDs, allows the construction of compact, efficient plasma reactors.  相似文献   

11.
This paper features the pulse polarity effect on ozone generation efficiency by adjusting the applied voltage and the flow rate in a coaxial dielectric barrier discharge reactor. Results show that utilization of unipolar pulse has better performance when compared with the bipolar mode, but on the other hand, utilization of the positive pulse has slightly higher efficiency than that of negative mode. Meanwhile, changing the gas flow rate shows a minor effect on ozone generation. Utilization of bipolar pulse would decrease the breakdown voltage and ozone generation efficiency when compared with unipolar pulse while it would lead to higher ozone concentrations at fixed applied voltage. The maximum ozone yield reaches 186.9 g/kWh at 6 kV positive pulse with ozone concentration of 11.9 g/Nm3.  相似文献   

12.
Cathodic plasma electrolysis (CPE) is used to deposit Zn coating on the surface of steel wire. The relationships between power parameters and coating characteristics were investigated in this study to determine the best way to control the coating process according to the CPE procedure and pulsed DC power cycle. We found that voltage should be greater than the critical voltage for the formation of plasma. Deposition coating is difficult to establish under DC supply, however, continuous coating is rather easily prepared under pulsed DC power of 120 V, 4000 Hz, and 80 % duty cycle. We adopted pulsed DC power to successfully facilitate Zn cations approaching the cathode surface as well as to prevent wire melting under high voltage by reducing the duty cycle. Decreases in voltage, frequency, or duty cycle did not contribute to plasma stability, but did increase the deposition rate and porosity. Our experimental plasma formation process showed that the role of plasma formation is to clean the cathode surface by melting and shocking, which produces deposition at the interval between two neighboring pulses.  相似文献   

13.
The influence of duty cycle on ozone generation and discharge characteristics was investigated experimentally using volume dielectric barrier discharge in both synthetic air and pure oxygen at atmospheric pressure. The discharge was driven by an amplitude-modulated AC high voltage–power supply producing TON (a single AC cycle) and TOFF periods with a widely variable duty cycle. The experimental results show that the energy delivered to the discharge during each AC cycle remains roughly constant and is independent of feed gas, duty cycle and TOFF. Both average discharge power and ozone concentration show an initial linear increase with duty cycle, and deviate gradually from linearity owing to an increase in gas temperature at higher duty cycles. Nevertheless, ozone yield remains nearly constant (45.7 ± 3.5 g/kWh in synthetic air and 94.7 ± 3.1 g/kWh in pure oxygen) over a wide range of applied duty cycles (0.02–1). This property can be conveniently employed to develop a unique ozone generator with a widely adjustable ozone concentration and simultaneously a constant ozone yield. Additionally, the discharges in synthetic air and pure oxygen have similar electrical characteristics; however, there are observable differences in apparent luminosity, which is weak and white-toned for synthetic air discharge, and bright and blue-toned for pure oxygen discharge.  相似文献   

14.
In present paper, an atmospheric-pressure low-temperature plasma treatment of pyrolysis fuel oil (PFO) was investigated in dielectric barrier discharge plasma torch reactor. The effect of the applied voltage and the volume of feedstock, as the main parameters, on the cracking of PFO were studied. By increasing the applied voltage from 10 to 16 kV, the production rate of hydrocarbons containing methane, ethylene, acetylene, propane, propylene, and C4 rise 18 times. In this case, the production rate of hydrogen increases by approximately 14 times and reaches 7.27 × 10?3 mol/min for 16 kV. In the feedstock volume investigation, based on limitation of reactor volume, the production rate of hydrocarbons decreased from 0.44 × 10?3 to 0.15 × 10?3 mol/min by increasing volume of feedstock from 1 to 5 cc.  相似文献   

15.
Mercury emission from coal combustion has been the fourth biggest pollutant in China, following the dusts, SO2 and NOX. The technology of non-thermal plasma has been widely studied for oxidizing gaseous elemental mercury at low temperature. In this paper, a new method of combining non-thermal plasma with calcium oxide was proposed to remove elemental mercury from simulated flue gas. The effects of non-thermal plasma, input energy, combination mode of plasma and calcium oxide on Hg0 removal were investigated in a wire-cylinder non-thermal plasma reactor, whose energy was supplied by a high voltage alternating current power. The peak voltage and energy of the non-thermal plasma were measured by an oscilloscope and a high voltage probe (1000:1). The results showed that most of Hg0 was converted to oxidized mercury in simulated flue gas by non-thermal plasma treatment. The Hg0 removal efficiency of CaO was improved remarkably strengthened by the non-thermal plasma, which was closely related to input energy, and the maximum mercury removal efficiency was about 80 % at an optimal input energy. Through temperature-programmed decomposition and desorption and energy dispersive spectroscopy analysis, the majority of mercury species on CaO surface were Hg2O and HgO3 rather than HgO. Therefore, it can be concluded that O3 plays an important role in Hg0 oxidation under the condition of non-thermal plasma.  相似文献   

16.
Nitric oxide (NO) is a vasodilator and antihypertensive agent as well as a universal anti-microbial factor killing bacteria, fungi and parasites without killing human cells provided that an appropriate dose level and treatment time are applied. Exogenous NO is often employed in inhalation therapies for treating pulmonary hypertension in children and adults. NO generation from air in high voltage electrical discharges is being developed for medical uses because it is technologically simple, economical and portable. The related literature is reviewed here. The plasma can be a thermal plasma, where the temperature is of the order of 10,000 K, or it can be a non-thermal plasma, where the electron temperature is very high but the average gas temperature can vary over a wide range from close to room temperature to thousands of degrees above room temperature. The plasma temperature has significant effects on the chemical composition of the treated gas. These effects are explained based on the chemical reaction mechanism. Further, NO generated by electrical discharges is usually contaminated with nitrogen dioxide and sometimes with ozone and particulate matter. The techniques that have been successfully hybridized with the electrical discharge devices or that can potentially be hybridized for the purification of NO are also reviewed. Recent successful testing of electrical discharge-based NO generators for inhalation therapy on animal models in the US and routine use of them in Russia and east Europe for wound decontamination and fast heeling suggests that the technique has a great potential for applications in future.  相似文献   

17.
The authors recently developed a high-frequency pulsed plasma process for methane conversion to acetylene and hydrogen using a co-axial cylindrical (CAC) type of reactor. The energy efficiency represented by methane conversion rate per unit input energy has been improved so that such a pulsed plasma has potential for commercial acetylene production. A pulsed plasma consists of a pulsed corona discharge and a pulsed spark discharge. Most of energy is injected over the duration of the pulsed spark discharge. Methane conversion using this kind of pulsed plasma is a kind of pyrolysis enhanced by the pulsed spark discharge. In this study, a point-to-point (PTP) type of reactor that can produce a discharge channel over the duration of a pulse discharge was used for the pulsed plasma conversion of methane. The energy efficiency and carbon formation on electrodes have been improved. The influences of pulse frequency and pulse voltage on methane conversion rate and product selectivity were investigated. The features of methane conversion using PTP and CAC reactors were discussed.  相似文献   

18.
An one-dimensional fluid model is used to study the physico-chemical properties of a 90%Ar–10%Cl2 plasma produced in dielectric barrier discharges under different driving voltages. The spatio-temporal characteristics of the discharge are obtained by applying a sinusoidal voltage with different amplitudes and frequencies from 350 to 1200 V and 10 to 19 kHz, respectively. As the voltage amplitude increases the plasma electronegativity and plasma radiations are increased and their radiations move toward the cathode vicinity. With decreasing frequency, the plasma radiations move toward the anode vicinity and the plasma electronegativity and its radiations are enhanced. At low voltage amplitudes, plasma most radiates VUV photons while UV radiations take place at higher voltage amplitudes.  相似文献   

19.
A non-equilibrium warm plasma reactor has been constructed for methane reforming and hydrogen production. The discharge reactor was derived with 20 kV pulsed DC power supply with pulse duration of 4 µs, pulse frequency of 33 kHz. Electrical and optical characterizations of the reactor have been investigated. The electrical characteristics of the discharge revealed that the discharge was ignited by streamer to glow transition. The optical characteristics of the discharge revealed that the discharge was found to be strongly non-equilibrium with rotational temperature (Trot) of 2873 K and vibrational temperature (Tvib) of 12,130 K. The Stark broadening of the emitted Hα line profile was used to deduce the electron density, which was found to be in the order of 1016 cm?3. Methane conversion was strongly dependent upon the applied voltage and the methane flow rate. In general, under the specified operating condition, a methane conversion percentage of about 92% and a maximum hydrogen selectivity of 44.6% have been achieved. Specific energy consumption of methane conversion (SEC) and specific energy requirements for hydrogen formation (SER) of 5 eV/molecule has been achieved simultaneously with a maximum hydrogen production energy cost of about 3.8 µg/J. Finally, the decomposition of methane gas resulted in the deposition of an important byproduct namely graphene oxide.  相似文献   

20.
Electrical discharges are increasingly used to dissociate CO2 in CO and O2. This reaction is the first step in the way for the synthesis of value-added compounds from CO2 by using renewable electricity. If efficient, this technology might allow at the same time recycling CO2 and storing renewable energy in chemical form. At present, while the dissociation degree is measured in the reactor exhaust, little is experimentally known about the dissociation kinetics in the discharge and post-discharge. This knowledge is however critical to increasing the overall efficiency of the plasma process. To estimate the time dependence of the CO2 dissociation following a discharge event, we have coupled a LIF diagnostics to a nanosecond repetitively pulsed discharge in a mixture of CO2 and H2O. This paper discusses a procedure to obtain data on the time evolution of the CO2 dissociation, its limits and future perspectives. In addition, the local gas temperature is measured as well. We find that a few microseconds after the discharge pulse, CO2 is highly dissociated with a temperature around 2500 K. In about 100 µs, the temperature decreases at about 1500 K while the dissociation is reduced by about a factor of three.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号