首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
We have investigated the origin of the dielectric response of the plasma membrane of living yeast cells (Saccharomyces cerevisiae) by using radiofrequency dielectric spectroscopy. The cells were genetically engineered to overexpress in the membrane of yeast cells a G protein-coupled receptor--the Sterile2-alpha factor receptor protein (Ste2p)--fused to the green fluorescent protein (GFP). Presence of the Ste2-GFP proteins in the plasma membrane was confirmed by exciting the cells at 476 nm and observing with a confocal microscope the emission characteristic of the GFP from individual cells. The dielectric behavior of cells suspended in KCl solution was analyzed over the frequency range 40 Hz-110 MHz and compared to the behavior of control cells that lacked the ability to express Ste2p. A two-shell electrical cell model was used to fit the data starting from known structural parameters and adjustable electrical phase parameters. The best-fit value for the relative permittivity of the plasma membrane showed no significant difference between cells expressing Ste2p (1.63+/-0.11) and the control cells (1.75+/-0.16). This result confirmed earlier predictions that the dielectric properties of the plasma membrane in the radiofrequency range mostly reflect the properties of the hydrophobic layer of the membrane, which is populated by the hydrocarbon tails of the phospholipids and hydrophobic segments of integral membrane proteins. We discuss ways by which dielectric spectroscopy can be improved to be used for tag-free detection of proteins on the membrane.  相似文献   

2.
A pixel‐architecture film of retinal proteins was prepared by an approach combining chemical, physical and biological technologies. Oriented multilayers of purple membrane composed of bacteriorhodopsin (BR) and lipids were patterned on an array of gold electrode pixels. In order to improve stability and resolution, the gene engineering technique was employed to make a mutant of the protein BR by replacing the 36th amino acid residue from aspartic acid to cysteine with a thiol end group ready to react with gold; electric sedimentation was used to guarantee the high probability of formation of the Au‐S bond and meanwhile to orient BR; further chemical crosslinking was introduced among layers of purple membranes to significantly enhance photoelectrical signals while keeping high stability. The non‐bound BR region was eventually washed out by detergent, and the remaining BR pixels were thus detergent resistant due to chemical crosslinking among BR layers and covalent binding between the multilayer and the substrate. The protein array was confirmed to keep photoelectrical activity.  相似文献   

3.
This paper utilizes cyclodextrin-based host-guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-beta-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergent from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way.  相似文献   

4.
NMR of membrane-associated peptides and proteins   总被引:1,自引:0,他引:1  
In living cells, membrane proteins are essential to signal transduction, nutrient use, and energy exchange between the cell and environment. Due to challenges in protein expression, purification and crystallization, deposition of membrane protein structures in the Protein Data Bank lags far behind existing structures for soluble proteins. This review describes recent advances in solution NMR allowing the study of a select set of peripheral and integral membrane proteins. Surface-binding proteins discussed include amphitropic proteins, antimicrobial and anticancer peptides, the HIV-1 gp41 peptides, human alpha-synuclein and apolipoproteins. Also discussed are transmembrane proteins including bacterial outer membrane beta-barrel proteins and oligomeric alpha-helical proteins. These structural studies are possible due to solubilization of the proteins in membrane-mimetic constructs such as detergent micelles and bicelles. In addition to protein dynamics, protein-lipid interactions such as those between arginines and phosphatidylglycerols have been detected directly by NMR. These examples illustrate the unique role solution NMR spectroscopy plays in structural biology of membrane proteins.  相似文献   

5.
基于微流控技术的蛋白质结晶及其筛选方法的研究进展   总被引:1,自引:0,他引:1  
微流控技术以其高通量、低消耗和集成化等优点成为蛋白质结晶微型化研究的重要手段. 本文综述了基于微流控技术的蛋白质结晶技术和方法,主要包括微泵微阀、液滴(Droplet)、滑动芯片(SlipChip)以及液滴实验室(DropLab)等技术. 此外,还针对当前膜蛋白在结构生物学研究中的重要地位,综述了应用于膜蛋白结晶的微流控技术的研究进展.  相似文献   

6.
微流控技术以其高通量、 低消耗和集成化等优点成为蛋白质结晶微型化研究的重要手段. 本文综述了基于微流控技术的蛋白质结晶技术和方法, 主要包括微泵微阀、 液滴(Droplet)、 滑动芯片(SlipChip)以及液滴实验室(DropLab)等技术. 此外, 还针对当前膜蛋白在结构生物学研究中的重要地位, 综述了应用于膜蛋白结晶的微流控技术的研究进展.  相似文献   

7.
Bacteriorhodopsin (BR) is a photochromic membrane protein isolated from a strain of halobacteria.Embedment of BR into a polymeric matrix enables the application of the photoactive protein as an optical material.In this work,a chemically crosslinked BR/gelatin film was prepared.The cross-linked film was found to be highly stable even under extreme alkaline or detergent circumstance while BR maintained its bioactivity.The treatments of base and detergents also led to dramatic prolongation of the lifetime of M...  相似文献   

8.
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.  相似文献   

9.
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.  相似文献   

10.
Backbone nuclear magnetic resonance (NMR) assignments were achieved for diacylglycerol kinase (DAGK) in detergent micelles. DAGK is a homotrimeric integral membrane protein comprised of 121 residue subunits, each having three transmembrane segments. Assignments were made using TROSY-based pulse sequences. DAGK was found to be an almost exclusively helical protein. This work points to the feasibility of both solving the structure of DAGK using solution NMR methods and using NMR as a primary tool in structural studies of other helical integral membrane proteins of similar size and complexity.  相似文献   

11.
Mass spectrometry enables the in-depth structural elucidation of membrane protein complexes, which is of great interest in structural biology and drug discovery. Recent breakthroughs in this field revealed the need for design rules that allow fine-tuning the properties of detergents in solution and gas phase. Desirable features include protein charge reduction, because it helps to preserve native features of protein complexes during transfer from solution into the vacuum of a mass spectrometer. Addressing this challenge, we here present the first systematic gas-phase study of azobenzene detergents. The utility of gas-phase techniques for monitoring light-driven changes of isomer ratios and molecular properties are investigated in detail. This leads to the first azobenzene detergent that enables the native mass spectrometry analysis of membrane proteins and whose charge-reducing properties can be tuned by irradiation with light. More broadly, the presented work outlines new avenues for the high-throughput characterization of supramolecular systems and opens a new design strategy for detergents in membrane protein research.

Here, L. H. Urner and co-workers identify a new detergent design strategy for the non-denaturing structural analysis of membrane proteins by studying the gas-phase properties of azobenzene-based oligoglycerol detergents.  相似文献   

12.
Developing a better mechanistic understanding of membrane protein folding is urgently needed because of the discovery of an increasing number of human diseases, where membrane protein instability and misfolding is involved. Towards this goal, we investigated folding and stability of 7-transmembrane (TM) helical bundles by computational methods. We compared the results of three different algorithms for predicting changes in stability of proteins against an experimental mutation dataset obtained for bacteriorhodopsin (BR) and mammalian rhodopsin and find that 61.6% and 70.6% of the mutation results can potentially be explained by known local contributors to the stability of the folded state of BR and mammalian rhodopsin, respectively. To obtain further information on the predicted folding pathway of 7-TM proteins, we conducted simulated thermal unfolding experiments of all available rhodopsin structures with resolution better than 3 angstroms using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method (Jacobs, D. J., A. J. Rader, L. A. Kuhn and M. F. Thorpe [2001] Proteins 44, 150) described previously for a single mammalian rhodopsin structure (Rader et al. [2004] PNAS 101, 7246). In statistical comparison we found that structures of mammalian rhodopsin have a stability core that is characterized by long-range interactions involving amino acids close in space but distant in sequence comprising positions from both extracellular loop and TM regions. In contrast, BR-simulated unfolding does not reveal such a core but is dominated by interactions within individual and groups of TM helices, consistent with the two-stage hypothesis of membrane protein folding. Similar results were obtained for halo- and sensory rhodopsins as for BRs. However, the average folding core energies of sensory rhodopsins were in between those observed for mammalian rhodopsins and BRs hinting at a possible evolution of these structures toward a rhodopsin-like behavior. These results support the conclusion that although the two-stage model can explain the mechanisms of folding and stability of BR, it fails to account for the folding and stability of mammalian rhodopsin, even though the two proteins are structurally related.  相似文献   

13.
Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) after gentle suction application through micron-sized apertures in a borosilicate glass substrate. Incubation of GUVs with the purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. This approach reduces the time-consuming, laborious and sometimes difficult protein reconstitution processes normally performed after bilayer formation. Bilayer recordings are attractive for investigations of membrane proteins not accessible to patch clamp analysis, like e.g. proteins from organelles. In the presented work, we show the example of the outer membrane protein OmpF from Escherichia coli. We reconstituted OmpF in proteoliposomes and observed the characteristic trimeric conductance levels and the typical gating induced by pH and transmembrane voltage. Moreover, OmpF is the main entrance for beta-lactam antibiotics and we investigated translocation processes of antibiotics and modulation of OmpF by spermine. We suggest that the rapid formation of porin containing lipid bilayers is of potential for the efficient electrophysiological characterization of the OmpF protein, for studying membrane permeation processes and for the rapid screening of antibiotics.  相似文献   

14.
Detergents are often used to investigate the structure and dynamics of membrane proteins. Whereas the structural integrity seems to be preserved in detergents for many membrane proteins, their functional activity is frequently compromised, but can be restored in a lipid environment. Herein we show with per‐residue resolution that while OmpX forms a stable β‐barrel in DPC detergent micelles, DHPC/DMPC bicelles, and DMPC nanodiscs, the pico‐ to nanosecond and micro‐ to millisecond motions differ substantially between the detergent and lipid environment. In particular for the β‐strands, there is pronounced dynamic variability in the lipid environment, which appears to be suppressed in micelles. This unexpected complex and membrane‐mimetic‐dependent dynamic behavior indicates that the frequent loss of membrane protein activity in detergents might be related to reduced internal dynamics and that membrane protein activity correlates with lipid flexibility.  相似文献   

15.
Mapping the interaction sites between membrane‐spanning proteins is a key challenge in structural biology. In this study a carbene‐footprinting approach was developed and applied to identify the interfacial sites of a trimeric, integral membrane protein, OmpF, solubilised in micelles. The diazirine‐based footprinting probe is effectively sequestered by, and incorporated into, the micelles, thus leading to efficient labelling of the membrane‐spanning regions of the protein upon irradiation at 349 nm. Areas associated with protein–protein interactions between the trimer subunits remained unlabelled, thus revealing their location.  相似文献   

16.
It is of central interest in membrane proteomics to establish methods that combine efficient solubilization with enrichment of proteins and intact protein complexes. We have investigated the quantitative and qualitative solubilization efficiency of five commercially available detergents using mitochondria from the yeast Saccharomyces cerevisiae as model system. Combining the zwitterionic detergent Zwittergent 3-10 and the non-ionic detergent Triton X-114 resulted in a complementary solubilization of proteins, which was similar to that of the anionic detergent sodium dodecyl sulfate (SDS). The subsequent removal of soluble proteins by detergent/polymer two-phase system partitioning was further enhanced by addition of SDS and increasing pH. A large number of both integral and peripheral membrane protein subunits from mitochondrial membrane protein complexes were identified in the detergent phase. We suggest that the optimized solubilization protocol in combination with detergent/polymer two-phase partitioning is a mild and efficient method for initial enrichment of membrane proteins and membrane protein complexes in proteomic studies.  相似文献   

17.
Solubilization of integral membrane proteins in aqueous solutions requires the presence of amphiphilic molecules like detergents. The transmembrane region of the proteins is then surrounded by a corona formed by these molecules, ensuring a hydrophilic outer surface. The presence of this corona has strongly hampered structural studies of solubilized membrane proteins by small-angle X-ray scattering (SAXS), a technique frequently used to monitor conformational changes of soluble proteins. Through the online combination of size exclusion chromatography, SAXS, and refractometry, we have determined a precise geometrical model of the n-dodecyl β-d-maltopyranoside corona surrounding aquaporin-0, the most abundant membrane protein of the eye lens. The SAXS data were well-fitted by a detergent corona shaped in an elliptical toroid around the crystal structure of the protein, similar to the elliptical shape recently reported for nanodiscs (Skar-Gislinge et al. J. Am. Chem. Soc. 2010, 132, 13713-13722). The torus thickness determined from the curve-fitting protocol is in excellent agreement with the thickness of a lipid bilayer, while the number of detergent molecules deduced from the volume of the torus compares well with those obtained on the same sample from refractometry and mass analysis based on SAXS forward scattering. For the first time, the partial specific volume of the detergent surrounding a protein was measured. The present protocol is a crucial step toward future conformational studies of membrane proteins in solution.  相似文献   

18.
Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM−Hs) and 1,2-ethylenediamine (TZM−Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM−Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM−Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM−Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.  相似文献   

19.
Detergents serve as useful tools for membrane protein structural and functional studies. Their amphipathic nature allows detergents to associate with the hydrophobic regions of membrane proteins whilst maintaining the proteins in aqueous solution. However, widely used conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus there are major efforts underway to develop novel agents with improved properties. We prepared mesitylene‐cored glucoside amphiphiles (MGAs) with three alkyl chains and compared these agents with previously developed xylene‐linked maltoside agents (XMAs) with two alkyl chains and a conventional detergent (DDM). When these agents were evaluated for four membrane proteins including a G protein‐coupled receptor (GPCR), some agents such as MGA‐C13 and MGA‐C14 resulted in markedly enhanced stability of membrane proteins compared to both DDM and the XMAs. This favourable behaviour is due likely to the increased hydrophobic density provided by the extra alkyl chain. Thus, this study not only describes new glucoside agents with potential for membrane protein research, but also introduces a new detergent design principle for future development.  相似文献   

20.
Knowledge about the dynamical properties of a protein is of essential importance for understanding the structure–dynamics–function relationship at the atomic level. So far, however, the correlation between internal protein dynamics and functionality has only been studied indirectly in steady‐state experiments by variation of external parameters like temperature and hydration. In the present study we describe a novel type of (laser‐neutron) pump‐probe experiment, which combines in situ optical activation of the biological function of a membrane protein with a time‐dependent monitoring of the protein dynamics using quasielastic neutron scattering. As a first successful application we present data obtained selectively in the ground state and in the M‐intermediate of bacteriorhodopsin (BR). Temporary alterations in both localized reorientational protein motions and harmonic vibrational dynamics have been observed during the photocycle of BR. This observation is a direct proof for the functional significance of protein structural flexibility, which is correlated with the large‐scale structural changes in the protein structure occurring during the M‐intermediate. We anticipate that functionally important modulations of protein dynamics as observed here are of relevance for most other proteins exhibiting conformational transitions in the time course of functional operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号