首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A series of quinazolin-4(3H)-one derivatives containing a 1,3,4-oxadiazole thioether moiety were designed, synthesized and evaluated for their biological activities against phytopathogenic microorganisms. Antimicrobial bioassays in vitro indicated that most of the target compounds exhibited more significant antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) than the agricultural bactericide thiadiazole-copper. A comparative molecular similarity index analysis (CoMSIA) model with cross-validated q2 and non-cross-validated r2 values of 0.561 and 0.882 was generated to investigate the structure-activity relationships of title compounds against Xoo. Title compound 6w, which was rationally designed under the guidance of obtained CoMSIA model, exhibited the excellent anti-Xoo effect in vitro with an EC50 value of 29.10 μg/mL, which is approximately 3-folds more effective than thiadiazole-copper (113.93 μg/mL). In addition, compound 6i demonstrated the impressive antifungal effects against Rhizoctonia solani (Rs) and Fusarium graminearum (Fg) in vitro, with the corresponding EC50 values of 11.01 μg/mL and 36.00 μg/mL, which is obviously better than the agricultural fungicide hymexazol (76.74 μg/mL and 56.19 μg/mL, respectively). The above researches indicate that quinazolin-4(3H)-one derivatives containing a 1,3,4-oxadiazole thioether moiety could be further studied as template molecules of novel agricultural microbicides.  相似文献   

2.
By introducing the pyrazole moiety into the 5-position of 1,3,4-oxadiazole,a series of novel 2-(thioether/sulfone)-5-pyrazolyl-l,3,4-oxadiazole derivatives were synthesized.Preliminary bioassays suggested that target compounds exhibited appreciable activity against pathogenic bacteria Xanthomonas oryzae pv.oryzae(Xoo) and five phytopathogenic fungi in vitro.Among them,the half-maximal effective concentration(EC_(50)) values of 6c,7a,7b and 7c against Xoo were within 16.6 μg/mL and 65.7 μg/mL,which were better than those of commercial agricultural antibacterial bismerthiazol(92.6 μg/mL) and thiodiazole copper(121.8 μg/mL).While compounds 7a,7b,and 7c exerted comprehensive antifungal activity toward five plant fungi,which were comparable with that of hymexazol.The results demonstrated that this kind of compounds can be further studied and developed as promising antifungal and antibacterial agents.  相似文献   

3.
The binding modes of well known MurD inhibitors have been studied using molecular docking and molecular dynamics (MD) simulations. The docking results of inhibitors 1-30 revealed similar mode of interaction with Escherichia coli-MurD. Further, residues Thr36, Arg37, His183, Lys319, Lys348, Thr321, Ser415 and Phe422 are found to be important for inhibitors and E. coli-MurD interactions. Our docking procedure precisely predicted crystallographic bound inhibitor 7 as evident from root mean square deviation (0.96 Å). In addition inhibitors 2 and 3 have been successfully cross-docked within the MurD active site, which was pre-organized for the inhibitor 7. Induced fit best docked poses of 2, 3, 7 and 15/2Y1O complexes were subjected to 10 ns MD simulations to determine the stability of the predicted binding conformations. Induce fit derived docked complexes were found to be in a state of near equilibrium as evident by the low root mean square deviations between the starting complex structure and the energy minimized final average MD complex structures. The results of molecular docking and MD simulations described in this study will be useful for the development of new MurD inhibitors with high potency.  相似文献   

4.
A series of benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety were designed, synthesized and evaluated for their antibacterial, antifungal and antiviral activities. The bioassay results indicated that most of target compounds showed good antiviral activities against tobacco mosaic virus (TMV) and antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (Rs). Especially, the anti-Xoo effect of title compounds 5k (N-(5-methoxybenzo[d]thiazol-2-yl)-2-((5-(2-tolyl)-1,3,4-thiadiazol-2-yl)thio)acetamide) and the anti-Rs effect of title compounds 5a (N-(5-nitrobenzo[d]thiazol-2-yl)-2-((5-(4-(trifluorom ethyl)phenyl)-1,3,4-thiadiazol-2-yl)thio)acetmide) respectively reached 52.4% and 71.6% at 100?µg/mL, which are superior to that of bismerthiazol (32.0% and 52.3%). In addition, the protective and inactivation activities of title compound 5i (N-(5-methoxybenzo [d]thiazol-2-yl)-2-((5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)thio)acetamide) against TMV were 79.5% and 88.3%, respectively, which are better than that of ningnanmycin (76.4% and 86.8%). The above research showed that benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety may be used as potential molecular templates in searching for highly-efficient antiviral and antibacterial agents.  相似文献   

5.
Based on the core structure of Felbinac drug, three series (4ad, 5ad and 6an) of five membered heterocyclic derivatives containing three heteroatoms were designed and synthesized starting from Felbinac. In the rational design of the target molecules, the biphenyl ring along with the methylene bridge of felbinac was retained while the carboxyl group was substituted with biologically active substituents like 1,2,4-triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole, with an intent to obtain novel, better and safer anti-inflammatory agents with improved efficacy. The prepared molecules were then investigated for their anti-inflammatory, ulcerogenicity and analgesic activity in experimental animals. The tested compounds exhibited varying degrees of inflammatory activity (25.21–72.87%), analgesic activity (27.50–65.24%) and severity index on gastric mucosa in the range of 0.20–0.80 in comparison to positive control felbinac (62.44%, 68.70% and 1.5, respectively). Among all the prepared compounds, 2-(biphenyl-4-ylmethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (6c) emerged as the most potent NSAID compound exhibiting the highest anti-inflammatory activity (72.87% inhibition) and analgesic activity (65.24%) along with the least severity index on gastric mucosa (0.20). Further, molecular docking on cyclooxygenase and in silico ADME-Toxicity prediction studies also supported the experimental biological results and indicated that 6c has a potential to serve as a drug candidate or lead compound for developing novel anti-inflammatory and analgesic therapeutic agent(s) with minimum toxicity on gastric mucosa.  相似文献   

6.
7.
A series of novel anthranilic diamide derivatives incorporating 1,3,4‐oxadiazole or nitrogen‐containing saturated heterocyclic moieties were synthesized, characterized, and evaluated for bacteriostatic activity against three phytopathogenic bacteria Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (R. solanacearum) . The preliminary biological results indicated that most compounds exhibit bacteriostatic activity against three phytopathogenic bacteria. Among these compounds, compounds 6g , 6f , and 6i displayed better antibacterial activity. In the test with concentration of 200 µg/mL, antibacterial activity of compound 6i and 6j was 96%. In particular, the bacteriostatic activity displayed by compound 6h against Xoo is similar to the one displayed by commercial drug bismerthiazol.  相似文献   

8.
Although recent decades have witnessed the synthesis of 1,3,4-thiadiazoles via phosphorus POCl3-promoted cyclization reaction, simultaneous access to 2-amino-1,3,4-thiadiazole and 2-amino-1,3,4-oxadiazole analogs remains unexpected and elusive. Herein, a detailed regiocontrolled synthesis of 2-amino-1,3,4-thiadiazoles in good to high yields with good regioselectivities from readily available thiosemicarbazides using POCl3 was disclosed. Meantime, to establish a comprehensive structure–activity relationship, 2-amino-1,3,4-oxadiazole derivatives as single regioisomers were prepared via EDCI·HCl-triggered cyclization of the thiosemicarbazide intermediates. The in vitro anti-influenza assays proved that the selected compounds with the pyrazine/pyridine ring exhibited certain inhibitory activities against influenza A virus strains A/HK/68 (H3N2) and A/PR/8/34 (H1N1) in MDCK cells. Among them, N-(adamantan-1-yl)-5-(5-(azepan-1-yl)pyrazin-2-yl)-1,3,4-thiadiazol-2-amine (4j) was the most active compound, and exhibited favorable activity with EC50 values of 3.5 μM and 7.5 μM, respectively. In addition, the molecular docking results explained the reason why compound 4j had dual inhibitory activity and revealed the reasonable binding mode of this compound with the M2-S31N and M2-WT ion channels. This compound had the potential to be further developed as an anti-influenza drug.  相似文献   

9.
Plant microbial diseases caused global production constraints have become one of the most challenging events, thus urgently needing to be addressed nowadays. To efficiently promote the discovery of promising antimicrobial surrogates, a type of 1,3,4-oxadiazole thioethers owning naturally bioactive thiazolium patterns was designed and fabricated. Antibacterial screening results revealed that title compounds could significantly inhibit the growth of pathogens Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri. And the related antibacterial efficacy was elevated by approximately 386-, 16-, and 24-folds comparing those of mainly used commercial agents bismerthiazol and thiodiazole copper. In vivo experiment suggested that A9 could manage rice bacterial blight with the corresponding curative and protection efficiencies of 48.01% and 50.55% at 200 μg/mL. Moreover, SEM patterns and fluorescence spectra were performed to explore the possible antibacterial mechanism. Preliminary antifungal bioassays revealed that these molecules paraded broad-spectrum inhibition effects against three tested fungal strains. Considering the simple molecular skeleton and significant biological actions, title compounds can be further explored as potential antimicrobial surrogates for managing plant bacterial and fungal diseases.  相似文献   

10.
The synthesis and crystal structures of three mercapto functionalised 1,3,4-thiadiazoles and the crystal structure of 2-mercapto-5-methyl-1,3,4-thiadiazole are described. In the solid state, 2-mercapto-5-methyl-1,3,4-thiadiazole 1 forms a thioamide tautomer as shown by FTIR and Raman spectroscopy as well as X-ray crystallography and as theoretically predicted. The molecules are connected to form chains via N-H?S hydrogen bonds with N?S=328.3 pm. Bis(2-methyl-1,3,4-thiadiazolyl)-5,5′-disulfide 2, the disulfide of 1, as well as 2-(tert-butyldithio)-5-methyl-1,3,4-thiadiazole 3 and 2,5-bis(tert-butyldithio)-1,3,4-thiadiazole 4 have been synthesised and characterised by vibrational spectroscopy and X-ray diffraction.  相似文献   

11.
A series of 3-diphenylmethyl-6-substituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives (4aj and 5ad) were synthesized by condensation of 4-amino-5-diphenylmethyl-4H-1,2,4-triazole-3-thiol with various substituted aromatic acids and aryl/alkyl-isothiocyanates. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR and mass spectroscopic studies. These compounds were tested in vivo for their anti-inflammatory activity. The compounds which showed activity comparable to the standard drug ibuprofen were screened for their analgesic, ulcerogenic, lipid peroxidation and hepatotoxic effects. Compounds 6-(4-chlorophenyl)-3-diphenylmethyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (4a) and 6-(2,4-dichlorophenyl)-3-diphenylmethyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole(4c) emerged as the most active compounds of the series and were moderately more potent than the standard drug ibuprofen.  相似文献   

12.
In this study, a series of 3-phenylpropanamide derivatives with acyl hydrazone units were synthesized and characterized by 1H NMR, 13C NMR and HR MS. And the structure of compound III33 was confirmed by X-ray single crystal. The bioassay results showed that, compounds III8, III17, III22, and III34 showed excellent inhibition on Xanthomonas oryzae pv. pryzae (Xoo) with EC50 values of 7.1, 8.8, 9.5, and 4.7 μg/mL in vitro. The EC50 values of compounds III12, III14 and III33 against Ralstonia solanacearum (Rs) were 7.6, 7.6 and 7.9 μg/mL, respectively, all lower than the values of thiadiazol copper (TC) was 66.8 μg/mL and bismerthiazol (BT) was 72.4 μg/mL. Compounds III12, III14, III33, and III34 exhibited excellent antibacterial activity of more than 80% against Xanthomonas axonopodis pv. citri (Xac) in vitro. Besides, compounds III8 (51.4%) and III34 (52.1%) were highly effective against Xoo in vivo, outperforming TC (49.5%) and BT (47.8%). Compounds III8 (29.8%) and III34 (24.6%) were close to TC (41.7%) and BT (47.8%) in terms of protective efficacy against Xoo in vivo. Meanwhile, some of title compounds also displayed inhibitory effects against phytopathogenic fungi. In a word, this study illustrated that the structures combined with phenylpropane amide derivatives of the acyl hydrazone units could be used as potential antibacterial reagents in the future.  相似文献   

13.
BackgroundCannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified.MethodsThus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors.ResultsThe results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.  相似文献   

14.
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50?=?15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure–activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.  相似文献   

15.
The use of the MM2QM tool in a combined docking + molecular dynamics (MD) + molecular mechanics (MM) + quantum mechanical (QM) binding affinity prediction study is presented, and the tool itself is discussed. The system of interest is Mycobacterium tuberculosis (MTB) pantothenate synthetase in complexes with three highly similar sulfonamide inhibitors, for which crystal structures are available. Starting from the structure of MTB pantothenate synthetase in the “open” conformation and following the combined docking + MD + MM + QM procedure, we were able to capture the closing of the enzyme binding pocket and to reproduce the position of the ligands with an average root mean square deviation of 1.6 Å. Protein–ligand interaction energies were reproduced with an average error lower than 10%. The discussion on the MD part and a protein flexibility importance is carried out. The presented approach may be useful especially for finding analog inhibitors or improving drug candidates. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
A novel series of isatin hybrids 5a-g was designed, synthesized, and characterized spectroscopically. The synthesized compounds were evaluated for their cytotoxic activity against the human breast cancer cell line (MCF-7) by in vitro MTT assay. Amongst the tested compounds, 5e compound bearing benzyl moiety at N4 piperazine was found to be the most active with the promising IC50 (12.47 µM). Moreover, the active compounds 5e and 5g were subjected to antitumor evaluation (in vivo) against Dalton’s ascitic lymphoma (DAL) cell line and the results suggested that the best active compound 5e can normalize the blood picture in comparison to the standard drug. An in silico molecular docking study using the crystal structure of Hsp90 protein described the role of significant protein–ligand interactions and revealed more insights into the binding mode. The drug-likeliness of the compounds was predicted based on Lipinski's rule of five and pharmacokinetic ADME parameters. Hence, the synthesized isatin hybrids could be novel starting point anticancer lead compounds demonstrating drug-like properties which can be explored further for anticancer drug discovery.  相似文献   

17.
In the search for more efficient and versatile anti-phytopathogen agents, a series of new 1,3,4-oxadiazole thioether/sulfone analogues bearing a flexible N-containing heterocyclic pattern were elaborately prepared, and their bioactivities against plant pathogenic microorganisms were systematically evaluated. Bioassay screening results demonstrated that compounds 32 and 33 significantly inhibited the growth of Xanthomonas oryzae pv. oryzae (Xoo) in vitro (32, EC50 = 5.17 mg L?1; 33, EC50 = 1.19 mg L?1), which were significantly surpass commercial bismerthiazol (BT) and thiodiazole copper (TC). Meanwhile, pot experiments confirmed the prospective applications of compound 33 in managing rice bacterial leaf blight and its good safety toward rice plants. Further studies showed that compound 33 interfered with the formation of bacterial biofilms and inhibited bacterial virulence factors. Furthermore, an in vitro antifungal bioassay showed that compound 32 possessed remarkable growth inhibitory activity against Sclerotinia sclerotiorum (S.s., EC50 = 22.16 mg L?1) and Verticillium dahlia (V.d. EC50 = 32.78 mg L?1). These results all confirmed that the designed 1,3,4-oxadiazole compounds displayed potential for managing plant microbial diseases through targeting dihydrolipoamide S-succinyltransferase (DLST).  相似文献   

18.
Theileria annulata secretes peptidyl prolyl isomerase enzyme (TaPIN1) to manipulate the host cell oncogenic signaling pathway by disrupting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) protein level leading to an increased level of c-Jun proto-oncogene. Buparvaquone is a hydroxynaphthoquinone anti-theilerial drug and has been used to treat theileriosis. However, TaPIN1 contains the A53 P mutation that causes drug resistance. In this study, potential TaPIN1 inhibitors were investigated using a library of naphthoquinone derivatives. Comparative models of mutant (m) and wild type (wt) TaPIN1 were predicted and energy minimization was followed by structure validation. A naphthoquinone (hydroxynaphthalene-1,2-dione, hydroxynaphthalene-1,4-dione) and hydroxynaphthalene-2,3-dione library was screened by Schrödinger Glide HTVS, SP and XP docking methodologies and the docked compounds were ranked by the Glide XP scoring function. The two highest ranked docked compounds Compound 1 (4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynaphthalene-1,2-dione) and Compound 2 (6-acetyl-1,4,5,7,8-pentahydroxynaphthalene-2,3-dione) were used for further molecular dynamics (MD) simulation studies. The MD results showed that ligand Compound 1 was located in the active site of both mTaPIN1 and wtTaPIN1 and could be proposed as a potential inhibitor by acting as a substrate antagonist. However, ligand Compound 2 was displaced away from the binding pocket of wtTaPIN1 but was located near the active site binding pocket of mTaPIN1 suggesting that could be selectively evaluated as a potential inhibitor against the mTaPIN1. Compound 1 and Compound 2 ligands are potential inhibitors but Compound 2 is suggested as a better inhibitor for mTaPIN1. These ligands could also further evaluated as potential inhibitors against human peptidyl prolyl isomerase which causes cancer in humans by using the same mechanism as TaPIN1.  相似文献   

19.
A complex compound of Cu(II) nitrate with 2-amino-5-ethyl-1,3,4-thiadiazole was synthesized and its structure was studied by the methods of IR spectroscopy and X-ray crystal analysis. The complex has the composition Cu(NO3)2(2-amino-5-ethyl-1,3,4-thiadiazole)4 with four molecules of the heterocyclic ligand (coordination through nitrogen atoms of thiadiazole rings) and one of nitrate ions (the other is replaced in the second sphere) entering into the coordination sphere of the complex polyhedron. The internal coordination sphere of the complex has the form of a tetragonal pyramid with 2-amino-5-ethyl-1,3,4-thiadiazole ligands in the sites of its base and the oxygen atom of the nitrate ion in a slightly distorted vertex of the pyramid.  相似文献   

20.
A series of indole-derived methoxylated chalcones were described as anti-dermatophyte agents. The in vitro antifungal susceptibility testing against different dermatophytes revealed that most of compounds had potent activity against the dermatophyte strains. In particular, the 4-ethoxy derivative 4d with MIC values of 0.25−2 μg/ml was the most potent compound against Trichophyton interdigitale, Trichophyton veruccosum and Microsporum fulvum. Moreover, the 4-butoxy analog 4i displaying MIC values in the range of 1−16 μg/ml had the highest inhibitory activity against Trichophyton mentagrophytes, Microsporum canis, and Arthroderma benhamiae. To predict whether the synthesized compounds interact with tubulin binding site of dermatophytes, the 3D-structure of target protein was modeled by homology modeling and then used for molecular docking and molecular dynamics (MD) simulation studies. Docking simulation revealed that the promising compound 4d can properly bind with tubulin. The molecular dynamics analysis showed that interactions of compound 4d with the active site of target protein have binding stability throughout MD simulation. The results of this study could utilize in the design of more effective antifungal drugs with tubulin inhibition mechanism against keratinophilic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号