首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
采用密度泛函B3LYP方法,在6-311+G**基组水平上对胞嘧啶一水复合物质子转移引起的氨-酮式、氨-烯醇式与亚胺-酮式互变异构反应机理进行了计算研究,获得了互变异构过程的反应焓、活化能、活化吉布斯自由能和质子转移反应速率常数等参数。将Onsager反应场溶剂模型用于水相的计算,结果表明,胞嘧啶一水复合物无论在气相中...  相似文献   

2.
Spontaneous and near-infrared/infrared (NIR/IR)-induced interconversions between two amino-hydroxy conformers of monomeric cytosine have been investigated for the compound isolated in a low-temperature argon matrix. Combined use of a laser source (which provides narrowband NIR radiation) and a broadband NIR/IR source of excitation light allowed a detailed investigation of mutual conversions of the two conformers in question. The experiments carried out within the current work demonstrated that upon broadband NIR/IR irradiation (with the IR source of FTIR spectrometer) the population ratio of the two amino-hydroxy conformers changes towards a ratio corresponding to a photostationary state. Evolution of the conformer population ratio towards the photostationary ratio occurred independent of the initial ratio of conformers, which could be prepared by a population shift (in favor of one of the forms) induced by narrowband NIR excitation. Moreover, spontaneous tunneling conversion of the higher-energy conformer into a lower-energy form was observed for cytosine isolated in a low-temperature argon matrix kept in the dark. This process is slow and occurs on a time scale of days. The tunneling process, studied for matrix-isolated cytosine, clearly follows a dispersive type of kinetics rather than the classical monoexponential kinetics.  相似文献   

3.
N2-hydroxyisocytosine and 1-methyl-N2-hydroxyisocytosine were studied using a matrix isolation technique combined with infrared absorption spectroscopy. For N2-hydroxyisocytosine isolated in an Ar matrix (at 10 K), two imino-oxo isomers, one with the hydroxyimino =N-OH group directed toward the N1-H group (the form called further anti) and the second with the =N-OH group directed toward N3-H (syn), were observed in the ratio 1.4:1. The syn isomer is converted totally to the anti form after UV (lambda > 295 nm) irradiation of the matrix. A small amount of the N(3)H-hydroxy-amino tautomer of N2-hydroxyisocytosine was also detected in the matrix. This form did not react photochemically. For 1-methyl-N2-hydroxyisocytosine, only the syn form of the imino-oxo tautomer was observed after deposition of the matrix. UV (lambda > 295 nm) irradiation induced a photoreaction converting this isomer into the anti form. After 15% of the starting material had been converted into the product, a photostationary state was achieved, and no further progress of the reaction was observed. Subsequent UV irradiation (lambda > 335 nm) caused a back reaction, leading to a disappearance of the anti form and to the recovery of the initial syn isomer. All isomers were identified by comparing their experimental IR spectra with the spectra theoretically calculated at the DFT(B3LYP)/6-31G(d,p) level, where DFT is the density functional theory. Good agreement between the observed and predicted patterns of the spectral lines allowed for reliable identification. The experimental IR spectra were interpreted and discussed. The relative energies of the 12 isomers of N2-hydroxyisocytosine were calculated at the MP2/6-31G(d,p) and MP4//MP2/6-31G(d,p) levels. For six isomers of 1-methyl-N2-hydroxyisocytosine, the calculations were carried out at the MP2/6-31G(d,p) level. The anti form of the imino-oxo tautomer of N-hydroxyisocytosine and the syn form of the imino-oxo tautomer of 1-methyl-N2-hydroxyisocytosine were predicted to be the most stable.  相似文献   

4.
Diketene (C(4)H(4)O(2)) monomers were isolated in cryogenic Ar (15 K) and Xe (30 K) matrices. The infrared (IR) spectra of the freshly deposited matrices show that diketene monomers exclusively adopt the 4-methylene-oxetan-2-one form. In situ photochemical transformations of diketene were induced by tunable UV laser light. Diketene was found to be photostable when exposed to near-UV irradiations (λ> 300 nm). Irradiations in the middle-UV domain showed different types of photochemical reactivity occurring upon irradiations with 280 > λ > 240 nm and λ = 225 nm. The photoproducts were characterized by IR spectroscopy supported by B3LYP/6-311++G(d,p) calculations. Upon irradiation in the 280 > λ > 225 nm range, diketene was found to decompose in two ways: (i) with production of two parent ketene molecules (O═C═CH(2)), and (ii) with production of cyclopropanone (CP) plus carbon monoxide. For irradiations in the 280 > λ > 240 nm range, diketene exhibited two additional reactions: (iii) decomposition to allene (H(2)C═C═CH(2)) and carbon dioxide, and (iv) isomerization into cyclobutane-1,3-dione (CB). Of the above photoproducts, CP and CB were consumed by the same UV irradiations that resulted in their generation. Positive spectroscopic identification of CP and CB turned out to be possible with near-UV irradiations: CP decomposes to ethylene and carbon monoxide upon irradiation with λ = 345 nm; CB decomposes exclusively to two parent ketene molecules, without isomerization back to diketene or decarbonylation, upon irradiation with λ = 330 nm. Natural bond orbital (NBO) analysis showed that the two lowest excited singlet states of diketene are almost degenerate in energy and correspond to π* orbitals of C═C and C═O moieties. The NBO calculations helped to establish that the third excited singlet state, in terms of energy, has σ*(3s) Rydberg character, in accord with the literature.  相似文献   

5.
Monomeric 3,6-dithiopyridazine (3-mercapto- 6(1H)-pyridazinethione) was studied using the matrix-isolation method combined with quantum chemical calculations. The monomers of 3,6-dithiopyridazine, trapped from the gas phase into a low-temperature Ar matrix, were found to adopt the thione-thiol structure. In agreement with this experimental observation, the thione-thiol form was predicted (at the QCISD level) to be more stable by 13.5 kJ mol(-1) and by 39.6 kJ mol(-1) than the dithiol and the dithione tautomers, respectively. Monomers of 3,6-dithiopyridazine isolated in Ar matrixes were then irradiated with broadband UV (λ > 335 nm) light. Upon such irradiation, the thione-thiol form of the compound converted into the dithiol tautomer. The same phototransformation was observed when monochromatic λ = 385 nm laser light was used for irradiation. This allowed a first observation and spectral characterization of the dithiol form of 3,6-dithiopyridazine. Subsequent irradiation of the UV-generated dithiol tautomer with shorter-wavelength UV (λ > 275 nm) light led to partial repopulation of the thione-thiol form. Spectral signatures of the analogous photoreversibility were also found for the phototautomeric transformation in the model compound 3-thiopyridazine. The reliability of the QCISD predictions of relative energies of thiol and thione tautomeric forms was tested on the archetype example of 2-thiopyridine. For this compound, the comparison of the computed relative energy 10.9 kJ mol(-1) with the experimental estimate 10.0 ± 1.5 kJ mol(-1) (both in favor of the thiol form) was more than satisfactory.  相似文献   

6.
UV- and IR-induced photoisomerization of acetylacetone trapped in a nitrogen matrix at 4.3 K have been carried out using a tunable optical parametric oscillator type laser, or a mercury vapor lamp, coupled with Fourier Transform IR and UV spectroscopies. After deposition, the main form present in the cryogenic matrix is that chelated (enol). Upon UV irradiation, the intramolecular H bond is broken leading to nonchelated isomers among seven possible open forms. These forms have then been irradiated by resonant pi* <-- pi UV irradiation, or by resonant nuOH irradiation. The selective UV irradiation allows us to suggest a first vibrational assignment while the nuOH irradiation leads us to observe interconversions between the nonchelated isomers. In order to support our vibrational assignment, we have carried out theoretical calculations at the B3LYP/6-311++G(2d,2p) level of theory. This study shows that only five isomers are observed among eight postulated.  相似文献   

7.
The infrared spectra of furfuryl alcohol (2-furanmethanol, FFA) were investigated for FFA monomers isolated in low-temperature argon matrices. The structural interpretation of the obtained experimental spectra was assisted by analysis of the molecule's conformational landscape. According to the DFT(B3LYP)/6-311++G(d,p) calculations, five different minimum energy structures were found on the potential energy surface of the molecule. They can be defined by the orientation of the OCCO and CCOH dihedral angles: GG', GG, TG, TT, GT (G = +gauche, G' = -gauche, T = trans) and have a symmetry equivalent configuration: GG' = G'G, GG = G'G', TG = TG', GT = G'T. When zero-point energies are taken into account, only three (GG', GG, and TT) out of the five unique minima correspond to stable structures. The most stable conformer GG' (OCCO, 72.7°; CCOH, -59.3°), which in gas phase at room temperature accounts for ~65% of the total population, was the only form isolated in the argon matrices at 14 K. The other two relevant forms convert into conformer GG' during matrix deposition. The low temperature glassy and crystalline states of FFA were also obtained and their infrared spectra assigned, suggesting the sole existence of the GG' conformer also in these phases. The photochemical behavior of FFA induced in situ, by tunable UV-laser, was also studied. The longest wavelength resulting in photochemical changes in the structure of the irradiated sample was found to be λ = 229 nm. Such UV irradiation of the matrix-isolated FFA led to production of formaldehyde and different isomeric C(4)H(4)O species. Cycloprop-2-ene-1-carbaldehyde and buta-2,3-dienal (two conformers) are the main initial C(4)H(4)O photoproducts formed upon short-time excitation at λ = 229 nm. But-3-ynal (two conformers) was the principal photoproduct resulting from prolonged excitation at λ= 229 nm, being consumed upon irradiation at shorter wavelengths (λ < 227.5 nm). Vinyl ketene is produced from FFA in the trans conformation and undergoes isomerization to the cis form upon irradiation at λ < 227.5 nm. Cyclopropene, propyne, allene, and CO were also identified in the irradiated matrices (in particular at the later stages of irradiation), suggesting that the photoproduced aldehydes partially decarbonylate during the performed photochemical experiments.  相似文献   

8.
Intramolecular hydrogen-atom migrations in 2-hydroxy-3-nitropyridine have been investigated by low-temperature matrix-isolation infrared (IR) spectroscopy with the aid of density functional theory (DFT) calculation. An IR spectrum measured after deposition was assigned to an enol isomer, the conformation of which is anti in relation to OH versus N in the pyridine ring. When the matrix sample was exposed to UV and visible light (lambda>350 nm), an IR spectrum consistent with a keto product was observed. During the irradiation, an IR spectrum of a transient species, a photoreaction intermediate between anti-enol and keto, was observed, which was assigned to syn-enol. The bands of syn-enol disappeared completely when the irradiation was stopped, while those of the original isomer, anti-enol, reappeared. No reverse isomerization was observable in the corresponding deuterated species. This led to the conclusion that the isomerization from syn to anti occurs through hydrogen-atom tunneling. On the other hand, an aci-nitro form was produced by UV irradiation (lambda=365+/-10 nm) without visible light. The conformation around the aci-nitro group was determined to be cis-cis by comparison with the spectral patterns obtained by the DFT/B3LYP/6-31++G** calculation. The dynamics of the hydrogen-atom migrations between anti- and syn-enols, syn-enol and keto, and anti-enol and aci-nitro are discussed in terms of the potential surfaces obtained by the DFT calculation.  相似文献   

9.
We investigated the laser ablation of an elastomer composite with picosecond‐ (ps‐) and femtosecond‐ (fs‐) pulsed UV lasers (ps‐laser: λ = 263 nm, τ = 8 ps; fs‐laser: λ = 248 nm, τ = 500 fs). Upon laser irradiation, a unique microstructure on the surface of the elastomer composite (acrylate polymer) containing carbon black (particle size: 18–30 nm) was observed. The laser‐ablated surfaces were analyzed by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The formation mechanism is discussed in terms of thermal effects induced by the different pulse durations of the lasers.  相似文献   

10.
Infrared spectra of N4-hydroxycytosine isolated in argon and nitrogen low-temperature matrixes are reported. The compound was found to adopt the syn structure of the imino-oxo tautomeric form exclusively. A photoreaction (lambda > 250 nm) converting this form into the anti isomer was observed. The reaction is reversible and leads to a photostationary point. The initial infrared spectrum and the spectrum of the photoproduct were assigned to the syn and anti isomers, respectively. This assignment is based on a close agreement between the experimental spectra and the spectra theoretically simulated at the DFT(B3LYP)/6-31++G** level of theory.  相似文献   

11.
An infrared spectroscopic investigation has been performed on the trans and cis isomers of thionitrous acid (HSNO) and their D- and 15NO-isotopic modifications in argon matrices at 12 K. The substances were prepared photolytically from thionylimide (HNSO) isotopes in the matrix. With UV (250 nm), VIS (585 nm), and IR irradiation the cis → trans or the trans → cis isomerization of HSNO was induced, allowing an unequivocal distinction between the closely resembling IR spectra of the trans and cis isomers. Complete sets of fundamental frequencies of both rotamers were obtained and assigned by normal coordinate analysis using the transferable valence force field (TVFF) approach. Parallel to this analysis ab initio calculations on the SCF- and CI-levels were performed to predict energy, geometry, and barrier of internal rotation for the two HSNO rotamers.  相似文献   

12.
We present a simple and versatile mechanism for the reversible photoswitching of dye-doped core-shell nanoparticles. Photochromic dithienylethenes are incorporated into the outer shell, close enough to the dyes entrapped in the core to efficiently quench them by energy transfer when photoconverted with UV light. The emission can be switched back on by irradiation with λ > 450 nm.  相似文献   

13.
Photoswitchable or photoactivatable fluorescent dyes are potentially applicable to ultrahigh density optical memory media as well as super-resolution fluorescence imaging when the dyes are highly fluorescent and have large absorption coefficients. Here, we report on highly fluorescent photochromic dyes, which are initially nonluminous in solution under irradiation with visible light but activated to emit green or red fluorescence upon irradiation with ultraviolet (UV) light. The dyes 5a-9a are sulfone derivatives of 1,2-bis(2-ethyl-6-phenyl(or thienyl)-1-benzothiophen-3-yl)perfluorocyclopentene. It was found that substitution of phenyl or thiophene rings at 6 and 6' positions of the benzothiophene-1,1-dioxide groups is effective to increase the fluorescence quantum yields of the closed-ring isomers over 0.7 and absorption coefficients over 4 × 10(4) M(-1) cm(-1). The phenyl-substituted derivatives 5a-7a undergo photocyclization reactions to produce yellow closed-ring isomers 5b-7b, which emit brilliant green fluorescence at around 550 nm (Φ(F) = 0.87-0.88) under irradiation with 488 nm light. Any absorption intensity change of the closed-ring isomers was not observed even after 100 h storage in the dark at 80 °C. The closed-ring isomers slowly returned to the initial open-ring isomers upon irradiation with visible (λ > 480 nm) light. The ring-opening quantum yields (Φ(C→O)) were measured to be (1.6-4.0) × 10(-4). When the phenyl substituents are replaced with thiophene rings, such as compounds 8a and 9a, the absorption bands of the closed-ring isomers shift to longer than 500 nm. The closed-ring isomers exhibit brilliant red fluorescences at around 620 nm (Φ(F) = 0.61-0.78) under irradiation with 532 nm light. The ring-opening reactions are very slow (Φ(C→O) < 1 × 10(-5)). The fluorescence lifetimes of these sulfone derivatives were measured to be around 2-3 ns, which is much longer than the value of the closed-ring isomer of 1,2-bis(2-methyl-1-benzothiophen-3-yl)perfluorocyclopentene (τ(F) = 4 and 22 ps). The closed-ring isomer 8b in 1,4-dioxane exhibits excellent fatigue resistant property under irradiation with visible light (λ > 440 nm) superior to the stability of Rhodamine 101 in ethanol.  相似文献   

14.
The effect of intermolecular proton transfer on the spectral properties of levofloxacin in the ground and excited electronic states was studied. The preferred direction of possible protolytic reactions induced by UV irradiation in this compound was studied. It was found that the proton transfer processes have a considerable effect on the capability of the compound to emit light and occur on the nanosecond timescale. The photochemical reactions of the tree forms of levofloxacin (pH: 4.0, 7.0, 10.0) were studied by laser flash photolysis and product studies. Irradiation at pH 4 yielded a pulse and transient (λmax = 395, 515, 575 nm) assigned to the protonated triplet. Irradiation at pH 7 yielded a transient species (λmax = 525, 610 nm) assigned to the neutral form. Protonation of the anionic singlet excited state was also observed (λmax = 440, 570, 680 nm).  相似文献   

15.
Complex OsH(6)(P(i)Pr(3))(2) (1) deprotonates cytosine to give molecular hydrogen and the d(4)-trihydride derivative OsH(3)(cytosinate)(P(i)Pr(3))(2) (2), which in solution exists as a mixture of isomers containing κ(2)-N1,O (2a) and κ(2)-N3,O (2b) amino-oxo and κ(2)-N3,N4 (2c) imino-oxo tautomers. The major isomer 2b associates with the minor one 2c through N-H···N and N-H···O hydrogen bonds to form [2b·2c](2) dimers, which crystallize from saturated pentane solutions of 2. Complex 1 is also able to perform the double deprotonation of cytosine (cytosinate') to afford the dinuclear derivative (P(i)Pr(3))(2)H(3)Os(cytosinate')OsH(3)(P(i)Pr(3))(2) (3), where the anion is coordinated κ(2)-N1,O and κ(2)-N3,N4 to two different OsH(3)(P(i)Pr(3))(2) metal fragments. The deprotonation of deoxycytidine and cytidine leads to OsH(3)(deoxycytidinate)(P(i)Pr(3))(2) (4) and OsH(3)(cytidinate)(P(i)Pr(3))(2) (5), respectively, containing the anion κ(2)-N3,N4 coordinated. Dimer [2b·2c](2) and dinuclear complex 3 have been characterized by X-ray diffraction analysis.  相似文献   

16.
Cryogenic matrix isolation experiments have allowed the measurement of the UV absorption spectra of the high-energy non-chelated isomers of acetylacetone, these isomers being produced by UV irradiation of the stable chelated form. Their identification has been done by coupling selective UV-induced isomerization, infrared spectroscopy, and harmonic vibrational frequency calculations using density functional theory. The relative energies of the chelated and non-chelated forms of acetylacetone in the S0 state have been obtained using density functional theory and coupled-cluster methods. For each isomer of acetylacetone, we have calculated the UV transition energies and dipole oscillator strengths using the excited-state coupled-cluster methods, including EOMCCSD (equation-of-motion coupled-cluster method with singles and doubles) and CR-EOMCCSD(T) (the completely renormalized EOMCC approach with singles, doubles, and non-iterative triples). For dipole-allowed transition energies, there is a very good agreement between experiment and theory. In particular, the CR-EOMCCSD(T) approach explains the blue shift in the electronic spectrum due to the formation of the non-chelated species after the UV irradiation of the chelated form of acetylacetone. Both experiment and CR-EOMCCSD(T) theory identify two among the seven non-chelated forms to be characterized by red-shifted UV transitions relative to the remaining five non-chelated isomers.  相似文献   

17.
Several water-soluble cationic surfactants, 4-alkylazobenzene-4'-(oxy-2-hydroxypropyl)trimethylammonium methylsulfate (AZMS) (AZMS-0, AZMS-1, AZMS-2, AZMS-4, and AZMS-8), containing alkylglycidylether and azoarene have been synthesized with high yields of 63-78% and their surface-active properties have been investigated upon irradiation with UV/vis light. All of the trans-AZMS surfactants are isomerized to cis-trans mixtures containing 92.5% cis isomer by UV light irradiation at 350 nm. The cis isomers in the mixtures are reverted to trans isomers by visible light irradiation (lambda>445 nm). Such photoisomerization induces changes in the surface activity of each surfactant. The critical micelle concentration (cmc) of the trans form of AZMS-8 surfactant is about 1.28x10(-4) mol/l. At the photostationary state, 92.5% of the trans form is changed to the cis form which exhibits a slightly higher cmc (3.41x10(-4) mol/l). The new cmc of AZMS surfactants upon photoisomerization is similar to that of the ideal mixed micellar system. In particular, the ratio of cmc(cis) to cmc(trans) of AZMS derivatives is about 1.87-2.85 which increases proportionally with the chain length of alkyl group. The minimum average area per molecule (A(min)(a/w)) for the trans and cis isomers of AZMS-8 is 0.60 and 0.74 nm(2), respectively. The difference in the A(min)(a/w) may originate from the structural differences in the two isomers. These values are quite different as compared to those of the conventional azobenzene surfactants. Copyright 2000 Academic Press.  相似文献   

18.
New thermal- and photoresponsive core-shell nanogel particles were obtained from self-assembly in aqueous solution of a double-hydrophilic block copolymer (DHBCP) of which the two blocks could be photo-cross-linked via the reversible photodimerization and photocleavage of coumarin moieties. The diblock copolymer, consisting of poly[N,N-dimethylacrylamide-co-4-methyl-[7-(methacryloyl)oxyethyloxy]coumarin] and poly[N-isopropylacrylamide-co-4-methyl-[7-(methacryloyl)oxyethyloxy]coumarin] (P(DMA-co-CMA)-b-P(NIPAM-co-CMA)), was synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization. At T > LCST of the P(NIPAM-co-CMA) block, core-shell micelles were formed and UV light irradiation at λ > 310 nm resulted in cross-linking of both the micelle core of P(NIPAM-co-CMA) and the micelle shell of P(DMA-co-CMA); subsequent cooling of the solution to T < LCST gave rise to water-soluble, swollen nanogel particles. Upon UV light irradiation at λ < 260 nm, the decrease of cross-linking density could increase the swelling of nanogel particles by ~23% in diameter. By alternating irradiation with the different wavelengths, the average hydrodynamic diameter of nanogel particles was tunable between ~58 and ~47 nm. Interestingly, upon further cooling of the solution, aggregation occurred for nanogel particles with a moderate cross-linking density (10%-40% dimerization of coumarin moieties). Therefore, such core- and shell-cross-linked nanogel could display both "intraparticle" LCST (solubility of polymer chains forming the core) and "interparticle" UCST (solubility of particles). The possible mechanism and the effect of dimerization degree on the UCST behavior were discussed.  相似文献   

19.
It has been shown that under high-power laser UV irradiation (I = 108–1010 W/cm2, λ = 266 nm, τp = 30 ps) water becomes ionized by a two-photon mechanism to form some free radicals including the hydrated electron e?aq.  相似文献   

20.
Maleimide–vinyl ether resins polymerise upon UV irradiation without the addition of a photoinitiator. The first step of initiation is an electron transfer from a ground state vinyl ether molecule to the triplet maleimide. Absolute rate constants for the reaction of triplet maleimide (λmax=260 and 320 nm) with maleimide itself, unsaturated monomers, inorganic ions, and alcohols were determined by laser flash photolysis. The mechanisms (electron and hydrogen transfer, depending on the substrate) are identified by FT-EPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号