首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The importance of accurately treating van der Waals interactions between the quantum mechanical (QM) and molecular mechanical (MM) atoms in hybrid QM/MM simulations has been investigated systematically. First, a set of van der Waals (vdW) parameters was optimized for an approximate density functional method, the self-consistent charge-tight binding density functional (SCC-DFTB) approach, based on small hydrogen-bonding clusters. The sensitivity of condensed phase observables to the SCC-DFTB vdW parameters was then quantitatively investigated by SCC-DFTB/MM simulations of several model systems using the optimized set and two sets of extreme vdW parameters selected from the CHARMM22 forcefield. The model systems include a model FAD molecule in solution and a solvated enediolate, and the properties studied include the radial distribution functions of water molecules around the solute (model FAD and enediolate), the reduction potential of the model FAD and the potential of mean force for an intramolecular proton transfer in the enediolate. Although there are noticeable differences between parameter sets for gas-phase clusters and solvent structures around the solute, thermodynamic quantities in the condensed phase (e.g., reduction potential and potential of mean force) were found to be less sensitive to the numerical values of vdW parameters. The differences between SCC-DFTB/MM results with the three vdW parameter sets for SCC-DFTB atoms were explained in terms of the effects of the parameter set on solvation. The current study has made it clear that efforts in improving the reliability of QM/MM methods for energetical properties in the condensed phase should focus on components other than van der Waals interactions between QM and MM atoms.  相似文献   

3.
Van der Waals (vdW) deep-UV (DUV) nonlinear optical (NLO) crystal is an important material system recently developed. Herein, we review its concept and original intention, and then summarized the discovery process of related materials, including the role of A-site cations and the resulting two-/one-dimensional vdW DUV NLO systems. Finally, we evaluate the practical DUV NLO performance and prospected the opportunities and challenges.  相似文献   

4.
As a clean and renewable future energy source, hydrogen fuel can be produced via solar water splitting. Two-dimensional (2D) black phosphorene (black-P) can harvest visible light due to the desirable band gap, which promises it as a metal-free photocatalyst. However, black-P can be only used to produce hydrogen since the oxidation potential of water locates lower than the position of the valence band maximum. To improve the photocatalytic performance of black-P, here, using black-P and blue phosphorene (blue-P) monolayers, we propose a 2D van der Waals (vdW) heterojunction. Theoretical results, including the band structures, density of states, Bader charge population, charge density di erence, and optical absorption spectra, clearly reveal that the visible light absorption ability is obviously improved, and the band edge alignment of the proposed vdW heterojunction displays a typical type-II feature to effectively separate the photogenerated carriers. At the same time, the built-in interfacialelectric field prevents the electron-hole recombination. These predictions suggest that the examined phosphorene-based vdW heterojunction is an efficient photocatalyst for solar water splitting.  相似文献   

5.
Spontaneous rupture of some polymer films upon heating is commonplace. The very criterion for this instability is the system free energy, G(L), possessing a negative curvature. In films that are apolar with h < or = 100 nm van der Waals (vdW) interactions usually constitute a major contribution to G(L) for which the approximate form G(L) = -A/12piL(2) (where A is the Hamaker constant), ignoring retardation, has been widely used. In this work, we investigate the limits to this approximation by calculating the complete vdW interactions for popular polymer film systems in dewetting experiments including air-polystyrene-SiO2-Si, air-polystyrene-poly(methyl methacrylate)-Si, and air-poly(methyl methacrylate)-polystyrene-Si based on the theory of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP). We found that retardation effects could produce significant modifications to G(L) even when the thickness of the polymer and/or the interlayer is only 1-2 nm, contrary to conventional presumption.  相似文献   

6.
用同步辐射光源和光电离质谱研究了分子束中ArHClvanderWaals(vdW)团簇的光电离过程.测量结果表明,分子束中的ArHCl的浓匠与气源压力近似满足如下关系式:a(ArHCl)%=179×10-8.首次给出了ArHCl团簇的光电高效率曲线,并测得ArHCl 的出现势为12.52±0.03eV。根据实验测量的HCl和ArHCl的电高能,计算出Ar-HCl 的解高能为022±0.03eV.用Gaussian-94w量化程序计算出解高能约为0.16eV.实验表明当团簇内的Ar电离时,ArHCl 质谱峰强度明显低于预计的强度,是由于体系电离后发生了电荷转移及解离过程.  相似文献   

7.
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established.  相似文献   

8.
《Fluid Phase Equilibria》2006,245(1):20-25
This work aims to estimate the limitations of the van der Waals one-fluid (vdW1) approximation in the prediction of the viscosity of Lennard–Jones (LJ) mixtures. To do so, non-equilibrium molecular dynamics simulations have been performed. Results on mixtures have been compared to those of their equivalent pure fluids (in the sense of the vdW1 model). Several systems (146 configurations) are studied, which are composed of binary and ternary mixtures in various thermodynamic states and for different combining rules. In a first step, deviations induced separately by LJ molecular parameters (size or energy) have been analyzed. It is shown that the vdW1 model is well designed for the energy parameter in every configuration. On the contrary, for the size parameter, deviations induced by this one-fluid approach are shown to be large in dense state and low temperature systems. In a second step, the coupling effects of the LJ size and energy parameters with the mass are studied. It appears that an accurate one-fluid approximation for viscosity should involve a coupling between the mass and the size parameters in its formulation (which is not the case with the vdW1 model) but not between the mass and the energy.  相似文献   

9.
A successful approach to calculating van der Waals (vdW) forces between irregular bodies is to divide the bodies into small cylindrical volume elements and integrate the vdW interactions between opposing elements. In this context it has been common to use Hamaker's expression for parallel plates to approximate the vdW interactions between the opposing elements. This present study shows that Hamaker's vdW expression for parallel plates does not accurately describe the vdW interactions for co-axial cylinders having a ratio of cylinder radius to separation distance (R/D) of 10 or less. This restricts the systems that can be simulated using this technique and explicitly excludes consideration of topographical or compositional variations at the nanoscale for surfaces that are in contact or within a few nm of contact. To address this limitation, approximate analytical expressions for nonretarded vdW forces between finite cylinders in different orientations are derived and are shown to produce a high level of agreement with forces calculated using full numerical solutions of the corresponding Hamaker's equations. The expressions developed here allow accurate calculation of vdW forces in systems where particles are in contact or within a few nm of contact with surfaces and the particles and/or surfaces have heterogeneous nanoscale morphology or composition. These calculations can be performed at comparatively low computational cost compared to the full numerical solution of Hamaker's equations.  相似文献   

10.
A theoretical study of the potential energy surface and bound states is performed for the ground state of the NeI(2) van der Waals (vdW) complex. The three-dimensional interaction energies are obtained from ab initio coupled-cluster, coupled-cluster single double (triple)/complete basis set, calculations using large basis sets, of quadruple- through quintuple-zeta quality, in conjunction with relativistic effective core potentials for the heavy iodine atoms. For the analytical representation of the surface two different schemes, based on fitting and interpolation surface generation techniques, are employed. The surface shows a double-minimum topology for linear and T-shaped configurations. Full variational quantum mechanical calculations are carried out using the model surfaces, and the vibrationally averaged structures and energetics for the NeI(2) isomers are determined. The accuracy of the potential energy surfaces is validated by a comparison between the present results and the corresponding experimental data available. In lieu of more experimental measurements, we also report our results/predictions on higher bound vibrational vdW levels, and the influence of the employed surface on them is discussed.  相似文献   

11.
We study the mutual interactions of simple parallel polymers within the framework of density-functional theory (DFT). As the conventional implementations of DFT do not treat the long-range dispersion [van der Waals (vdW)] interactions, we develop a systematic correction scheme for the nonlocal energy contribution of the polymer interaction at the intermediate to the asymptotic separations. We primarily focus on the three polymers, polyethylene, isotactic polypropylene, and isotactic polyvinylchloride, but the scheme presented applies also more generally to other simple polymers. From first-principle calculations we extract the geometrical and electronic structures of the polymers and the local part of their interaction energy, as well as the static electric response. The dynamic electrodynamic response is modeled on the basis of these static calculations, from which the nonlocal vdW interaction of the polymers is extracted.  相似文献   

12.
The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables.  相似文献   

13.
We investigate the performance of several van der Waals (vdW) functionals at calculating the interactions between benzene and the copper (111) surface, using the local orbital approach in the SIESTA code. We demonstrate the importance of using surface optimized basis sets to calculate properties of pure surfaces, including surface energies and the work function. We quantify the errors created using (3 × 3) supercells to study adsorbate interactions using much larger supercells, and show non‐negligible errors in the binding energies and separation distances. We examine the eight high‐symmetry orientations of benzene on the Cu (111) surface, reporting the binding energies, separation distance, and change in work function. The optimized vdW‐DF(optB88‐vdW) functional provides superior results to the vdW‐DF(revPBE) and vdW‐DF2(rPW86) functionals, and closely matches the experimental and experimentally deduced values. This work demonstrates that local orbital methods using appropriate basis sets combined with a vdW functional can model adsorption between metal surfaces and organic molecules.  相似文献   

14.
We investigate the interaction between water molecules and gold nanoclusters Au(n) through a systematic density functional theory study within both the generalized gradient approximation and the nonlocal van der Waals (vdW) density functional theory. Both planar (n = 6-12) and three-dimensional (3D) clusters (n = 17-20) are studied. We find that applying vdW density functional theory leads to an increase in the Au-Au bond length and a decrease in the cohesive energy for all clusters studied. We classify water adsorption on nanoclusters according to the corner, edge, and surface adsorption geometries. In both corner and edge adsorptions, water molecule approaches the cluster through the O atom. For planar clusters, surface adsorption occurs in a O-up/H-down geometry with water plane oriented nearly perpendicular to the cluster. For 3D clusters, water instead favors a near-flat surface adsorption geometry with the water O atom sitting nearly atop a surface Au atom, in agreement with previous study on bulk surfaces. Including vdW interaction increases the adsorption energy for the weak surface adsorption but reduces the adsorption energy for the strong corner adsorption due to increased water-cluster bond length. By analyzing the adsorption induced charge rearrangement through Bader's charge partitioning and electron density difference and the orbital interaction through the projected density of states, we conclude that the bonding between water and gold nanocluster is determined by an interplay between electrostatic interaction and covalent interaction involving both the water lone-pair and in-plane orbitals and the gold 5d and 6s orbitals. Including vdW interaction does not change qualitatively the physical picture but does change quantitatively the adsorption structure due to the fluxionality of gold nanoclusters.  相似文献   

15.
In this study, we show that the inclusion of a short-range part of the total attractive interaction into a reference system allows a natural extension of the traditional first-order perturbation theory of simple fluids to practically all thermodynamic states. This theory is applied to the thermodynamic functions and the liquid–vapor coexistence curve of the Lennard-Jones-like medium range Yukawa fluid and to the Sutherland fluid. Comparison with computer simulation data and the second-order Barker–Henderson perturbation theory is discussed.  相似文献   

16.
Due to the computational cost involved, when developing a force field for new compounds, one often avoids fitting van der Waals (vdW) terms, instead relying on a general force field based on the atom type. Here, we provide a novel approach to efficiently optimize vdW terms, based on both ab initio dimer energies and condensed phase properties. The approach avoids the computational challenges of searching the parameter space by using an extrapolation method to obtain a reliable difference quotient for the parameter derivatives based on the central difference. The derivatives are then used in an active‐space optimization method which convergences quadratically. This method is applicable to polarizable and nonpolarizable force fields, although we focus on the parameterization of the AMBER force field. The scaling of the electrostatic potential (ESP) of the compounds is also studied. The algorithm is tested on 12 compounds, reducing the root mean squared error (RMSE) of the density from 0.061 g/cm3 with GAFF parameters to 0.004 g/cm3, and the heat of vaporization from 1.13 to 0.05 kcal/mol. This is done with only four iterations of molecular dynamic runs. Using the optimized vdW parameters, the RMSE of the self‐diffusion was reduced from 1.22 × 10?9 to 0.78 × 10?9 m2 s?1 and the RMSE of the hydration free energies was reduced from 0.30 to 0.26 kcal/mol. Scaling the ESP to improve dimer energies resulted in the RMSE improving to 0.77× 10?9 m2 s?1, but the worsened to 0.33 kcal/mol. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
18.
A recently proposed non-uniform fifth-order thermodynamic perturbation theory (TPT) is employed to investigate the adsorption of a hard core attractive Yukawa (HCAY) fluid in a spherical cavity. Extensive comparison with available simulation data indicate that the non-uniform fifth-order TPT is sufficiently reliable in calculating the density profiles of the HCAY fluid in the highly confining geometry, and generally is more accurate than a previous third-order?+?second-order perturbation density functional theory. The non-uniform fifth-order TPT is free from numerically solving an Ornstein–Zernike integral equation, and also free of any adjustable parameter; consequently, it can be applied to both supercritical and subcritical temperature regions. The non-uniform fifth-order TPT is employed to investigate critical adsorption of the HCYA fluid in a single spherical cavity – it is disclosed that the critical fluctuations near the critical point induce depletion adsorption – quantitative theoretical calculation on relationship between the critical depletion adsorption, parameters of coexistence bulk phase and the responsible external field is in agreement with qualitative physical analysis.  相似文献   

19.
20.
付东  赵毅 《化学学报》2005,63(1):11-17
应用二阶微扰理论, Duh-Mier-Y-Teran状态方程和在平均球近似(mean spherical approximation, MSA)的基础上获得的直接相关函数, 建立了适用于均匀流体和非均匀流体的状态方程. 结合此状态方程, 重整化群理论(renormalization group theory, RG)和密度泛函理论(density functional theory, DFT), 分别研究了Yukawa流体的相平衡和界面张力. 结果与分子模拟数据吻合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号