首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The band-target entropy minimization (BTEM) curve resolution technique has been used to analyze in situ reflection-absorption infrared spectroscopy (RAIRS) data of CO chemisorption on Ni(1 1 1) single crystal surfaces. The bilinearity assumption for pRAIRS data, that is, negative logarithm to the base 10 of raw reflectance RAIRS data, was found to be sufficiently valid for the test data. A total of 11 real pure component pRAIRS spectra were elucidated via BTEM in tandem with an iterative residual spectral data analysis. Furthermore, 2 abstract pure component right singular vectors were found to account for all the pRAIRS non-linearities, baseline drifts and other spectral noise. In total, 100.2% of the pRAIRS signals were accounted for by these 13 spectral components. The 11 real pure component pRAIRS spectra and their corresponding relative concentration kinetic sequences correlate with 6 well-known adsorbed CO domain structures. Moreover, amongst the BTEM resolved spectra were five new bands that were not previously observed using conventional visual identification methods adopted by surface chemists. These new bands engendered new understanding to the mechanism of CO chemisorption on Ni(1 1 1). The combination of BTEM with residual spectral analysis was thus demonstrated to be efficacious for curve resolution of in situ RAIRS data obtained from surface chemistry studies.  相似文献   

2.
Effendi Widjaja  Marc Garland 《Talanta》2010,80(5):1665-1671
Raman spectra of human nail clippings from various sources were collected and then deconvoluted to obtain the pure component spectra of the underlying constituents present. This blind-deconvolution was performed using a self-modeling curve resolution technique, namely band-target entropy minimization (BTEM). The aim was to simplify the complexity of the Raman spectra and hence to identify the underlying biological molecules in more detail. BTEM analysis could recover 13 pure component Raman spectral estimates from the collected 438 spectra measured from 113 nail samples. Six recovered pure component spectral estimates correspond to proteins or polypeptides that contain various amino acids such as phenylalanine, tyrosine, tryptophan, and cysteine. Two are associated with the secondary structures of proteins, and five are associated with two carotenoid species, lipid, ferulic acid, and calcium phosphate. Subsequently, the relative concentrations of these bio-constituents were calculated from the measured mixture spectra and the pure component BTEM estimates. These profiles indicated that the concentrations of some bio-constituents are correlated while others are not. A further analysis using target transformation factor analysis (TTFA) revealed the possible presence of curcumin in the human nails. Since the present approach and analysis is rather general, it might be extended to many other biological tissues in a rather straightforward and similar manner, thus revealing more detailed underlying biochemical information such as biomarkers that may be useful for diagnostic purposes.  相似文献   

3.
In this paper, we present the use of one of the self-modeling curve resolution techniques, band-target entropy minimization (BTEM), which is independent of any spectral library, to elucidate Raman pure component spectra of two different manganese oxides arising from laser-induced structural changes. It is often extremely difficult to obtain the pure Raman spectrum of MnO2 without changing it to another structural form. However, using BTEM to analyze the collected in situ Raman spectra measured as a function of laser exposure time, has enabled us to obtain both the pure component spectra of the original sample and the product due to laser irradiation. This technique proves to be an efficient Raman spectral interpretation method for thermal sensitive solid samples.  相似文献   

4.
A method is proposed, on the basis of a recently developed algorithm--Band Target Entropy Minimization (BTEM)--to reconstruct mass spectra of pure components from mixture spectra. This method is particular useful in dealing with spectral data with discrete features (like mass spectra). Compared to the original BTEM, which has been applied to differentiable spectroscopies such as Fourier-transfer infrared spectroscopy (FTIR), ultraviolet (UV), Raman, and nuclear magnetic resonance (NMR), the latest modifications were obtained through: (1) Reformulating the objective function using the peak heights instead of their derivatives; (2) weighting the abstract vector VT to reduce the effect of noise; (3) using a two-peak targeting strategy (tBTEM) to deal with strongly overlapping peaks; and (4) using exhaustive search to locate all the component spectra. A set of 50 multi-component mass spectra was generated from ten reference experimental pure component spectra. Many of the compounds chosen have common MS fragments and therefore, many of the pure component spectra have considerable intensity in same data channels. In addition, a set of MS spectra from a real system with four components was used to examine the newly developed algorithm. Successful reconstruction of the ten component spectra of the simulated system and the four component spectra of the real system was rapidly achieved using the new tBTEM algorithm. The advantages of the new algorithm and its implication for rapid system identification of unknown mixtures are readily apparent.  相似文献   

5.
The adsorption of NO and CO was studied on an alumina-supported palladium catalyst by in situ diffuse reflectance infrared spectroscopy (DRIFTS). The temperature range was 50-160 degrees C and a wide variety of partial pressures was used. The band-target entropy minimization (BTEM) algorithm was applied to the DRIFTS data sets resulting in the pure component spectra of numerous species adsorbed on both the Pd (primarily a variety of Pd-CO and Pd-NO species, in various oxidation states and coordinations) and alumina surface species (i.e. nitrates, nitrites, carbonates, bicarbonates, formates, and isocyanates) as well as gas phase species. Twenty seven previously known species were identified as well as three new and previously unreported or previously unassigned spectra. The present study indicates that BTEM can be meaningfully applied to Pd/Al2O3 DRIFTS in order to provide enhanced spectroscopic analysis. Moreover, the present results are compared in detail with the recent BTEM analysis of CO and NO adsorption on Pt/Al2O3 using DRIFTS (Phys. Chem. Chem. Phys. 2008, 10, 3535).  相似文献   

6.
Trace organometallic intermediates arising from complex organic syntheses are usually quite difficult to detect spectroscopically. In situ FTIR and in situ NMR are the only techniques that are used with any regularity for such studies. In this contribution, high-pressure in situ Raman spectroscopic measurements were performed for the rhodium catalyzed hydroformylation of 3,3-dimethylbut-1-ene using Rh4(CO)12 as catalyst precursor at 298 K – a reaction extensively studied previously by more sensitive in situ FTIR. The Raman spectroscopic measurements were analyzed using the band-target entropy minimization (BTEM) algorithm. As expected, the pure component spectra of dissolved CO, 3,3-dimethylbut-1-ene, and 4,4-dimethylpentanal were easily recovered. In addition, the pure component spectra of the precursor Rh4(CO)12 and the intermediate RCORh(CO)4 (R = (CH3)3CCH2CH2) were successfully reconstructed – even though the mean concentrations of both species were on the order of 150 ppm. The BTEM estimate of the Raman spectrum of RCORh(CO)4 is reported for the first time. This Raman spectrum is consistent with the DFT predicted spectrum. This study represents the first combined application of Raman spectroscopy and BTEM analysis to a homogeneously catalyzed metal-mediated reaction. The potential and limitations of this general approach are discussed.  相似文献   

7.
A combination of singular value decomposition, entropy minimization, and simulated annealing was applied to a synthetic 7-species spectroscopic data set with added white noise. The pure spectra were highly overlapping. Global minima for selected objective functions were obtained for the transformation of the first seven right singular vectors. Simple Shannon type entropy functions were used in the objective functions and realistic physical constraints were imposed in the penalties. It was found that good first approximations for the pure component spectra could be obtained without the use of any a priori information. The present method out performed the two widely used routines, namely Simplisma and OPA-ALS, as well as IPCA. These results indicate that a combination of SVD, entropy minimization, and simulated annealing is a potentially powerful tool for spectral reconstructions from large real experimental systems.  相似文献   

8.
The binary solution of acetic acid in CDCl(3) was studied at room pressure on the interval T = 293-313 K with a series of acetic acid concentrations up to 0.16 M. In-situ Fourier transform infrared (FTIR) spectroscopy measurements on the interval of 400-3800 cm(-1) were utilized as the analytical method to monitor the spectral changes due to self-association of acetic acid. The band-target entropy minimization (BTEM) algorithm was employed to reconstruct the underlying pure component spectra. Analysis successfully provided two major spectral estimates of acetic acid, namely, the monomer (primarily in the form of monomer-CDCl(3) complex) and the centrosymmetric cyclic dimer. In addition, analysis provided one minor spectral estimate containing signals from both noncyclic dimers and higher aggregates. Also, spectral estimates were obtained for phosgene and water which were present at trace levels even though considerable precaution was taken to conduct the experiments under anhydrous and anaerobic conditions. Density functional theory (DFT) calculation was performed to assign the acetic acid structures corresponding to the BTEM spectral estimates. Since the structure of dilute acetic acid has been the subject of numerous studies, the present investigation helps to resolve some issues concerning the speciation of acetic acid at low concentrations in low polarity solvents. In particular, the present study provides for the first time, wide-range spectral reconstructions of the species present.  相似文献   

9.
In this paper, the use of in situ Raman spectroscopy together with a novel multivariate data analysis method, band‐target entropy minimization (BTEM), is discussed to monitor the solution polymerization of methacrylamide in aqueous medium. Although FTIR spectroscopy is a more popular spectroscopic technique for polymer characterization and in situ polymerization monitoring, Raman spectroscopy is selected over FTIR in the current study. This is because water has very strong and broad infrared absorption bands and thus masks most of the other infrared signals contributed from monomer and polymer. On the contrary, water has very weak Raman scattering and thus it does not interfere the other Raman signals. The polymerization was initiated with potassium persulfate (KPS). A series of experiments were carried out varying initial monomer concentration, initial KPS concentration, and polymerization temperature. In situ Raman spectroscopy was used to monitor the polymerizing mixture and measure the compositions. The collected reaction spectra were subjected to BTEM to elucidate the pure component spectra, and then determine the conversion of monomer. The conversion data was then used to obtain kinetic parameters for the polymerization. The rate of consumption of monomers was found to follow the expression R = keff [I]0.55[M]1.41. The activation energy of the system was estimated at 121 kJ/mol. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5697–5704, 2007  相似文献   

10.
The discrete and continuous wavelet transforms were applied to the overlapping signal analysis of the ratio data signal for simultaneous quantitative determination of the title subject compounds in samples. The ratio spectra data of the binary mixtures containing benazepril (BE) and hydrochlorothiazide (HCT) were transferred as data vectors into the wavelet domain. Signal compression, followed by a 1-dimension continuous wavelet transform (CWT), was used to obtain coincident transformed signals for pure BE and HCT and their mixtures. The coincident transformed amplitudes corresponding to both maximum and minimum points allowed construction of calibration graphs for each compound in the binary mixture. The validity of CWT calibrations was tested by analyzing synthetic mixtures of the investigated compounds, and successful results were obtained. All calculations were performed within EXCEL, C++, and MATLAB6.5 softwares. The obtained results indicated that our approach was flexible and applicable for the binary mixture analysis.  相似文献   

11.
We present new ideas underlying a self‐modelling factor analytical method which allows to extract pure component spectra and the associated concentration profiles from a set of spectroscopic measurements. The usefulness of the method is demonstrated and compared with established tools for model problems and for a system from catalytic hydroformylation by Rhodium complexes both with overlapping component spectra. Self‐modelling methods tend to minimize the overlap of the recovered spectra, which can result in an unwanted distortion of the spectra and concentration profiles. For strongly overlapping spectra a penalty condition on a specific singular value of the absorptivity matrix factor and a global decomposition approach are appropriate tools to construct improved factorizations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The adsorption of NO and CO was studied on an alumina-supported platinum catalyst by in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). The temperature range was 50-160 degrees C and a wide variety of partial pressures was used. The band-target entropy minimization (BTEM) algorithm was applied to the DRIFTS data sets resulting in the pure component spectra of numerous species adsorbed on both the Pt (primarily a variety of Pt0-CO and Pt2+ -CO species) and alumina surface (i.e. nitrates, nitrites, bicarbonates, isocyanates) as well as gas-phase species. Thirty-one previously known species were identified as well as 6 new and previously unreported or previously unassigned spectra. The present results indicate that BTEM analysis of DRIFTS data is a very promising tool for the study of heterogeneous catalytic in situ spectroscopic data.  相似文献   

13.
A new image analysis strategy is introduced to determine the composition and the structural characteristics of plant cell walls by combining Raman microspectroscopy and unsupervised data mining methods. The proposed method consists of three main steps: spectral preprocessing, spatial clustering of the image and finally estimation of spectral profiles of pure components and their weights. Point spectra of Raman maps of cell walls were preprocessed to remove noise and fluorescence contributions and compressed with PCA. Processed spectra were then subjected to k-means clustering to identify spatial segregations in the images. Cell wall images were reconstructed with cluster identities and each cluster was represented by the average spectrum of all the pixels in the cluster. Pure components spectra were estimated by spectral entropy minimization criteria with simulated annealing optimization. Two pure spectral estimates that represent lignin and carbohydrates were recovered and their spatial distributions were calculated. Our approach partitioned the cell walls into many sublayers, based on their composition, thus enabling composition analysis at subcellular levels. It also overcame the well known problem that native lignin spectra in lignocellulosics have high spectral overlap with contributions from cellulose and hemicelluloses, thus opening up new avenues for microanalyses of monolignol composition of native lignin and carbohydrates without chemical or mechanical extraction of the cell wall materials.  相似文献   

14.
Reactions of Rh2(CO)4Cl2 with 1,5-cyclooctadiene (COD) and tetramethylallene (TMA) were performed separately in anhydrous hexane under argon atmosphere. Multiple perturbations of Rh2(CO)4Cl2, COD and TMA were also performed during the reactions. These two reactions were monitored by in-situ FTIR (FIR and MIR) and/or Raman spectroscopies and the collected spectra were further analyzed with BTEM family of algorithms. DFT calculations were performed to identify the organometallic species present. The known diene complex Rh2(CO)2Cl24-C8H12) and a new allene complex Rh2(CO)3Cl22-C7H12) were formed as the two primary organo-rhodium products. Their pure component spectra were reconstructed in the three characteristic regions of 200-680, 800-1360, and 1500-2200 cm−1. Their relative concentrations were also obtained by the least square fitting of the carbonyl region 1500-2200 cm−1. The present contribution shows the usefulness of combining in-situ spectroscopic measurements, BTEM analysis and DFT spectral prediction in order to analyze organometallic reactions at high dilution and identify the reaction products.  相似文献   

15.
A new method for determining chromatographic peak purity is presented. The method uses condition index evolving profiles (CIEPs) and singular value evolving profiles (SVEPs). To produce a CIEP or a SVEP, singular value decompositions are performed on data matrices containing the analyte's pure-component spectrum and sample spectra as they evolve over a chromatographic time profile. Visual inspection of condition indices and singular values as they evolve over time enables detection of less than 0.5% of a spectrally similar impurity with no chromatographic resolution (Rs = 0). Additionally, the CIEPs and SVEPs allow estimation of chromatographic pure regions. This method represents an extension of CIEPs which have been used in successful library searches of multicomponent mixtures based on gas chromatography-Fourier transform infrared spectra and liquid chromatography-UV-visible spectra.  相似文献   

16.
A novel procedure is developed to describe and reproduce experimental coherent anti-Stokes Raman scattering (CARS) data, with particular emphasis on highly congested spectral regions. The approach, exemplified here with high-quality multiplex CARS data, makes use of spontaneous Raman scattering results. It is shown that the underlying vibrational Raman response can be retrieved from the multiplex CARS spectra, so that the Raman spectrum can be reconstituted, provided an adequate signal-to-noise ratio (SNR) is present in the experimental data and sufficient a priori knowledge of the vibrational resonances involved exists. The conversion of CARS to Raman data permits a quantitative interpretation of CARS spectra. This novel approach is demonstrated for highly congested multiplex CARS spectra of adenosine mono-, di-, and triphosphate (AMP, ADP, and ATP), nicotinamide adenine dinucleotide (NAD+), and small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Quantitative determination of nucleotide concentrations and composition analysis in mixtures is demonstrated.  相似文献   

17.
The reaction of [Rh(4)(CO)(9)(mu-CO)(3)] with 3-hexyne to form the butterfly cluster [(mu(4)-eta(2)-3-hexyne)Rh(4)(CO)(8)(mu-CO)(2)] was monitored viain-situ Raman spectroscopy using an NIR laser source, at room temperature and under atmospheric argon using n-hexane as solvent. The collected raw spectra were deconvoluted using band-target entropy minimization (BTEM). The pure component mid-Raman spectra of the [Rh(4)(CO)(9)(mu-CO)(3)] and the butterfly cluster [(mu(4)-eta(2)-3-hexyne)Rh(4)(CO)(8)(mu-CO)(2)], were reconstructed with a high signal-to-noise ratio. Full geometric optimization and Raman vibrational prediction were carried out using DFT. The experimental and predicted Raman spectra were in good agreement. In particular, the far-Raman vibrational modes in the region 100-280 cm(-1) provided characterization of the metal-metal bonds and direct confirmation of the structural integrity of the polynuclear frameworks in solution.  相似文献   

18.
Abstract—High resolution resonance Raman spectra of rhodopsin. isorhodopsin and photostationary state mixtures containing a high percentage of bathorhodopsin arc presented. New spectral features are detected which were not obsei-ved in lower resolution studies by other workers. All of the hands in the photostationary state spcctra arc assigned based on pure rhodopsin and isorhodopsin resonance Raman results and alterations in the photostationary state mixture. The spectral features in these spectra are invariant from 20 to 150K indicating that retinal and protein structural alteration, consistent with a model of excitation proposed by Lewis, occurs in steady-state spectra even at 20 K. In addition, the relative intensity of certain features in the photostationary state spectra are altered upon D2O suspension. One explanation for these alterations is that the contributions of various intcrmediates to the photostationary state mixture are changed when membrane fragments are suspended in D2O.  相似文献   

19.
Raman spectroscopic identification of unknown materials involves often the comparison of the spectrum of the unknown spectrum with previously recorded reference spectra or data from literature. However, when spectra with many Raman bands or spectra of mixtures are involved, searching can be quite complex. Different chemometrical approaches have been proposed, but these have some drawbacks. Therefore, in this paper a novel approach is proposed, which is based on a multivariate comparison of Raman band positions. Different similarity measures can be used and are evaluated with spectra of test samples that were recorded on different spectrometers, using different laser wavelengths. Moreover, this study evaluates the performances of this algorithm for identifying different compounds in mixtures, by using an iterative approach.  相似文献   

20.
The capability to obtain quantitative information of a simple way from Raman spectra is a subject of considerable interest. In this work, this is demonstrated for mixtures of ethanol with water and rhodamine-6G (R-6G) with methanol, which were analyzed directly in glass vessel. The Raman intensities and a simple mathematical model have been used and applied for the analysis of liquid samples. It is starting point to generate a general expression, from the experimental spectra, as the sum of the particular expression for each pure compound allow us to obtain an expression for the mixtures which can be used for determining concentrations, from the Raman spectrum, of the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号