首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Multimeric ligands consisting of multiple pharmacophores connected to a single backbone have been widely investigated for diagnostic and therapeutic applications. In this review, we summarize recent developments regarding multimeric radioligands targeting integrin αvβ3 receptors on cancer cells for molecular imaging and diagnostic applications using positron emission tomography (PET). Integrin αvβ3 receptors are glycoproteins expressed on the cell surface, which have a significant role in tumor angiogenesis. They act as receptors for several extracellular matrix proteins exposing the tripeptide sequence arginine-glycine-aspartic (RGD). Cyclic RDG peptidic ligands c(RGD) have been developed for integrin αvβ3 tumor-targeting positron emission tomography (PET) diagnosis. Several c(RGD) pharmacophores, connected with the linker and conjugated to a chelator or precursor for radiolabeling with different PET radionuclides (18F, 64Cu, and 68Ga), have resulted in multimeric ligands superior to c(RGD) monomers. The binding avidity, pharmacodynamic, and PET imaging properties of these multimeric c(RGD) radioligands, in relation to their structural characteristics are analyzed and discussed. Furthermore, specific examples from preclinical studies and clinical investigations are included.  相似文献   

2.
Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s−1) and high (1800 s−1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbβ3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s−1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbβ3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbβ3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition.  相似文献   

3.
PET of β-Amyloid plaques (Aβ) using [18F]florbetaben ([18F]FBB) and [18F]fluorodeoxyglucose ([18F]FDG) increasingly aid clinicians in early diagnosis of dementia, including Alzheimer’s disease (AD), frontotemporal disease, dementia with Lewy bodies, and vascular dementia. The aim of this retrospective analysis was to evaluate clinical relevance of [18F]FBB, [18F]FDG PET and complimentary CSF measurements in patients with suspected dementia. In this study, 40 patients with clinically suspected or history of dementia underwent (1) measurement of Aβ peptides, total tau, and p-tau protein levels in the cerebrospinal fluid (CSF) compared with healthy controls (HC); (2) clinical and neuropsychological assessment, which included Consortium to Establish a Registry for Alzheimer’s Disease neuropsychological assessment battery (CERAD-NAB); (3) [18F]FBB and [18F]FDG PET imaging within an average of 3 weeks. The subjects were within 15 days stratified using PET, CSF measurements as HC, mild cognitive impaired (MCI) and dementia including Alzheimer´s disease. The predictive dementia-related cognitive decline values were supporting the measurements. PET images were evaluated visually and quantitatively using standard uptake value ratios (SUVR). Twenty-one (52.5%) subjects were amyloid-positive (Aβ+), with a median neocortical SUVR of 1.80 for AD versus 1.20 relative to the respective 19 (47.5 %) amyloid-negative (Aβ-) subjects. Moreover, the [18F]FDG and [18F]FBB confirmed within a sub-group of 10 patients a good complimentary role by correlation between amyloid pathology and brain glucose metabolism in 8 out of 10 subjects. The results suggest the clinical relevance for [18F]FBB combined with [18F]FDG PET retention and CFS measurements serving the management of our patients with dementia. Therefore, [18F]FBB combined with [18F]FDG PET is a helpful tool for differential diagnosis, and supports the patients’ management as well as treatment.  相似文献   

4.
The purpose of this study is to develop peptide-based platelet-derived growth factor receptor β (PDGFRβ) imaging probes and examine the effects of several linkers, namely un-natural amino acids (D-alanine and β-alanine) and ethylene-glycol (EG), on the properties of Ga-DOTA-(linker)-IPLPPPRRPFFK peptides. Seven radiotracers, 67Ga-DOTA-(linker)-IPLPPPRRPFFK peptides, were designed, synthesized, and evaluated. The stability and cell uptake in PDGFRβ positive peptide cells were evaluated in vitro. The biodistribution of [67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) and [67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28), which were selected based on in vitro stability in murine plasma and cell uptake rates, were determined in BxPC3-luc-bearing nu/nu mice. Seven 67Ga-labeled peptides were successfully synthesized with high radiochemical yields (>85%) and purities (>99%). All evaluated radiotracers were stable in PBS (pH 7.4) at 37 °C. However, only [67Ga]27 and [67Ga]28 remained more than 75% after incubation in murine plasma at 37 °C for 1 h. [67Ga]27 exhibited the highest BxPC3-luc cell uptake among the prepared radiolabeled peptides. As regards the results of the biodistribution experiments, the tumor-to-blood ratios of [67Ga]27 and [67Ga]28 at 1 h post-injection were 2.61 ± 0.75 and 2.05 ± 0.77, respectively. Co-injection of [67Ga]27 and an excess amount of IPLPPPRRPFFK peptide as a blocking agent can significantly decrease this ratio. However, tumor accumulation was not considered sufficient. Therefore, further probe modification is required to assess tumor accumulation for in vivo imaging.  相似文献   

5.
The effect of microsolvation on excited-state proton transfer (ESPT) reaction of 3-hydroxyflavone (3HF) and its inclusion complex with γ-cyclodextrin (γ-CD) was studied using computational approaches. From molecular dynamics simulations, two possible inclusion complexes formed by the chromone ring (C-ring, Form I) and the phenyl ring (P-ring, Form II) of 3HF insertion to γ-CD were observed. Form II is likely more stable because of lower fluctuation of 3HF inside the hydrophobic cavity and lower water accessibility to the encapsulated 3HF. Next, the conformation analysis of these models in the ground (S0) and the first excited (S1) states was carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, to reveal the photophysical properties of 3HF influenced by the γ-CD. The results show that the intermolecular hydrogen bonding (interHB) between 3HF and γ-CD, and intramolecular hydrogen bonding (intraHB) within 3HF are strengthened in the S1 state confirmed by the shorter interHB and intraHB distances and the red-shift of O–H vibrational modes involving in the ESPT process. The simulated absorption and emission spectra are in good agreement with the experimental data. Significantly, in the S1 state, the keto form of 3HF is stabilized by γ-CD, explaining the increased quantum yield of keto emission of 3HF when complexing with γ-CD in the experiment. In the other word, ESPT of 3HF is more favorable in the γ-CD hydrophobic cavity than in aqueous solution.  相似文献   

6.
In recent years, G protein vs. β-arrestin biased agonism at opioid receptors has been proposed as an opportunity to produce antinociception with reduced adverse effects. However, at present this approach is highly debated, a reason why more information about biased ligands is required. While the practical relevance of bias in the case of µ-opioid receptors (MOP) still needs to be validated, it remains important to understand the basis of this bias of MOP (and other GPCRs). Recently, we reported two cyclopeptides with high affinity for MOP, the G protein biased Dmt-c[d-Lys-Phe-pCF3-Phe-Asp]NH2 (F-81), and the β-arrestin 2 biased Dmt-c[d-Lys-Phe-Asp]NH2 (C-33), as determined by calcium mobilization assay and bioluminescence resonance energy transfer-based assay. The biased character of F-81 and C-33 has been further analyzed in the [35S]GTPγS binding assay in human MOP-expressing cells, and the PathHunter enzyme complementation assay, used to measure β-arrestin 2 recruitment. To investigate the structural features of peptide-MOP complexes, we performed conformational analysis by NMR spectroscopy, molecular docking, and molecular dynamics simulation. These studies predicted that the two ligands form alternative complexes with MOP, engaging specific ligand–receptor contacts. This would induce different displays of the cytosolic side of the seven-helices bundle, in particular by stabilizing different angulations of helix 6, that could favor intracellular coupling to either G protein or β-arrestin.  相似文献   

7.
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer’s disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood–brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood–brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.  相似文献   

8.
α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a–m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a–m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.  相似文献   

9.
考察了在玫瑰红(RB)存在下γ-六氯环己烷(γ-HCH)在冰中的光降解. 结果表明, 光敏剂RB通过其激发态[RB]*及其产生的1O2*加速了γ-HCH的光降解, RB浓度是影响光降解率最显著的因素; γ-HCH在较低初始浓度下的光敏化降解更快; 无机盐离子的种类和浓度可以改变冰表面上类液层(LLL)的比例从而影响γ-HCH的光解. 通过分析γ-HCH光降解产物提出了RB存在时冰中γ-HCH的光降解作用机理.  相似文献   

10.
Increasing knowledge of the role of the intestinal microbiome in human health and well-being has resulted in increased interest in prebiotics, mainly oligosaccharides of various origins. To date, there are no reports in the literature on the prebiotic properties of oligosaccharides produced by the hydrolysis of pure fungal α-(1→3)-glucan. The aim of this study was to prepare α-(1→3)-glucooligosaccharides (α-(1→3)-GOS) and to perform initial evaluation of their prebiotic potential. The oligosaccharides were obtained by acid hydrolysis of α-(1→3)-glucan isolated from the fruiting bodies of Laetiporus sulphureus and then, characterized by HPLC. Fermentation of α-(1→3)-GOS and reference prebiotics was compared in in vitro pure cultures of Lactobacillus, Bifidobacterium, and enteric bacterial strains. A mixture of α-(1→3)-GOS, notably with a degree of polymerization of 2 to 9, was obtained. The hydrolysate was utilized for growth by most of the Lactobacillus strains tested and showed a strong bifidogenic effect, but did not promote the growth of Escherichia coli and Enterococcus faecalis. α-(1→3)-GOS proved to be effective in the selective stimulation of beneficial bacteria and can be further tested to determine their prebiotic functionality.  相似文献   

11.
Three α,α-difluorophosphonate derivatives of fosmidomycin were synthesized from diethyl 1,1-difluorobut-3-enylphosphonate and were evaluated on Escherichia coli. Two of them are among the best 1-deoxy-d-xylulose 5-phosphate reductoisomerase inhibitors, with IC50 in the nM range, much better than fosmidomycin, the reference compound. They also showed an enhanced antimicrobial activity against E. coli on Petri dishes in comparison with the corresponding phosphates and the non-fluorinated phosphonate.  相似文献   

12.
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.  相似文献   

13.
Background: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. Methods: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. Results: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as β- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. Conclusions: This is the first report about the production of β- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.  相似文献   

14.
研究了腐植酸(HA)存在下冰相体系中γ-六氯环己烷(γ-HCH)的光转化规律. 结果表明, HA浓度对γ-HCH的光转化率呈现低浓度促进而高浓度抑制的现象; 盐离子浓度、 NO2-及NO3-γ-HCH的光转化率均有促进作用; 低浓度Fe3+γ-HCH的光转化率有促进作用, 当Fe3+的浓度增大到50 μmol/L时, 呈现抑制效应; γ-HCH在不同pH值条件下光转化速率的大小顺序为碱性>中性>酸性. 冰相中HA通过产生单线态氧(1O2)、 羟基自由基(·OH)及三重激发态(HA*)加速γ-HCH的光转化. HA存在下γ-HCH的光转化产物主要是五氯环己烯、 邻二氯苯和对二氯苯、 一氯苯, 光转化过程中1O2通过消耗中间产物间接加速了γ-HCH的光转化过程.  相似文献   

15.
Two heteroleptic NiII complexes combined the redox-active catecholate and 2,2′- bipyridine ligand platforms were synthesized to observe a photoinduced intramolecular ligand-to-ligand charge transfer (LL’CT, HOMOcatecholate → LUMOα-diimine). A molecular design of compound [NiII(3,6-Cat)(bipy)]∙CH3CN (1) on the base of bulky 3,6-di-tert-butyl-o-benzoquinone (3,6-DTBQ) was an annelation of the ligand with an electron donor glycol fragment, producing derivative [NiII(3,6-Catgly)(bipy)]∙CH2Cl2 (2), in order to influence the energy of LL’CT transition. A substantial longwave shift of the absorption peak was observed in the UV-Vis-NIR spectra of 2 compared with those in 1. In addition, the studied NiII derivatives demonstrated a pronounced negative solvatochromism, which was established using a broad set of solvents. The molecular geometry of both compounds can be ascribed as an insignificantly distorted square-planar type, and the π–π intermolecular stacking of the neighboring α-diimines is realized in a crystal packing. There is a lamellar crystal structure for complex 1, whereas the perpendicular T-motifs with the inter-stacks attractive π–π interactions form the packing of complex 2. The redox-active nature of ligand systems was clearly shown through the electrochemical study: a quasi-reversible one-electron reduction of 2,2′-bipyridine and two reversible successive one-electron oxidative conversations (“catecholate dianion—o-benzosemiquinonato radical anion—neutral o-benzoquinone”) were detected.  相似文献   

16.
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.  相似文献   

17.
Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.  相似文献   

18.
Folk experiences suggest natural products in Tetradium ruticarpum can be effective inhibitors towards diabetes-related enzymes. The compounds were experimentally isolated, structurally elucidated, and tested in vitro for their inhibition effects on tyrosine phosphatase 1B (PTP1B) and α-glucosidase (3W37). Density functional theory and molecular docking techniques were utilized as computational methods to predict the stability of the ligands and simulate interaction between the studied inhibitory agents and the targeted proteins. Structural elucidation identifies two natural products: 2-heptyl-1-methylquinolin-4-one (1) and 3-[4-(4-methylhydroxy-2-butenyloxy)-phenyl]-2-propenol (2). In vitro study shows that the compounds (1 and 2) possess high potentiality for the inhibition of PTP1B (IC50 values of 24.3 ± 0.8, and 47.7 ± 1.1 μM) and α-glucosidase (IC50 values of 92.1 ± 0.8, and 167.4 ± 0.4 μM). DS values and the number of interactions obtained from docking simulation highly correlate with the experimental results yielded. Furthermore, in-depth analyses of the structure–activity relationship suggest significant contributions of amino acids Arg254 and Arg676 to the conformational distortion of PTP1B and 3W37 structures overall, thus leading to the deterioration of their enzymatic activity observed in assay-based experiments. This study encourages further investigations either to develop appropriate alternatives for diabetes treatment or to verify the role of amino acids Arg254 and Arg676.  相似文献   

19.
Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by μ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, μ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors. Fourteen novel diazatricyclodecanes belonging to the 9-propionyl-10-substituted-9,10-diazatricyclo[4.2.1.12,5]decane (compounds 20–23, 53, 57 and 59) and 2-propionyl-7-substituted-2,7-diazatricyclo[4.4.0.03,8]decane (compounds 24–27, 54, 58 and 60) series, respectively, have been synthesized and their ability to bind to the opioid μ-, δ- and κ-receptors was evaluated. Five of these derivatives, compounds 20, 21, 24, 26 and 53, showed μ-affinity in the nanomolar range with a negligible affinity towards δ- and κ-receptors and high μ-receptor selectivity. The synthesized compounds showed μ-receptor selectivity higher than those of previously reported methylarylcinnamyl analogs.  相似文献   

20.
The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号