首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
S‐Nitrosothiols (RSNOs) serve as air‐stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron‐transfer, redox‐innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer‐sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans‐[LA‐O‐N=N‐O‐LA]2? [LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO‐B(C6F5)3] radical anion, which is susceptible to N?N coupling prior to loss of RSSR.  相似文献   

2.
A facile route toward the synthesis of isoquinolin‐3‐ones through a cooperative B(C6F5)3‐ and Cp*CoIII‐catalyzed C?H bond activation of imines with diazo compounds is presented. The inclusion of a catalytic amount of B(C6F5)3 results in a highly efficient reaction, thus enabling unstable NH imines to serve as substrates.  相似文献   

3.
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed.  相似文献   

4.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2‐aryl‐3H‐indol‐3‐ones with α‐methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2‐allyl‐indolin‐3‐ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen‐bonding interactions, especially the enhanced N?H???O hydrogen‐bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   

5.
Metal‐organic frameworks (MOFs) as new classes of proton‐conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton‐conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(μ3‐HPhIDC)(μ2‐C2O4)0.5(H2O))?2 H2O}n (M=Tb ( ZZU‐1 ); Eu ( ZZU‐2 )) (H3PhIDC=2‐phenyl‐1H‐imidazole‐4,5‐dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high‐performance proton conduction and recognition ability for formic acid. Both ZZU‐1 and ZZU‐2 show temperature‐ and humidity‐dependent proton‐conducting characteristics with high conductivities of 8.95×10?4 and 4.63×10?4 S cm‐1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF‐based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10?2 mol L?1 by ZZU‐1 and 2.0×10?2 mol L?1 by ZZU‐2 . Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N‐hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton‐conductive MOFs‐based sensors for detecting formic acid.  相似文献   

6.
Sehoon Park 《中国化学》2019,37(10):1057-1071
Transition metal‐catalyzed hydrosilylation is one of the most widely utilized reduction methods as an alternative to hydrogenation in academia and industry. One feature distinct from hydrogenation would be able to install sp3 C—Si bond(s) onto substrates skeleton via hydrosilylation of alkenes. Recently, B(C6F5)3 with hydrosilanes has been demonstrated to be an efficient, metal‐free catalyst system for the consecutive transformation of heteroatom‐containing substrates accompanied by the formation of sp3 C—Si bond(s), which has not been realized thus far under the transition metal‐catalyzed hydrosilylative conditions. In this review, I outline the B(C6F5)3‐mediated consecutive hydrosilylations of heteroarenes containing quinolines, pyridines, and furans, and of conjugated nitriles/imines to provide a new family of compounds having sp3 C—Si bond(s) with high chemo‐, regio‐ and/or stereoselectivities. The silylative cascade conversion of unactivated N‐aryl piperidines to sila‐N‐heterocycles catalyzed by B(C6F5)3 involving consecutive dehydrogenation, hydrosilylation, and intramolecular C(sp2)—H silylation, is presented in another section. Chemical selectivity and mechanism of the boron catalysis focused on the sp3 C—Si bond formation are highlighted.  相似文献   

7.
4,5‐Dimethyl‐1,2‐bis(1‐naphthylethynyl)benzene ( 12 ) undergoes a rapid multiple ring‐closure reaction upon treatment with the strong boron Lewis acid B(C6F5)3 to yield the multiply annulated, planar conjugated π‐system 13 (50 % yield). In the course of this reaction, a C6F5 group was transferred from boron to carbon. Treatment of 12 with CH3B(C6F5)2 proceeded similarly, giving a mixture of 13 (C6F5‐transfer) and the product 15 , which was formed by CH3‐group transfer. 1,2‐Bis(phenylethynyl)benzene ( 8 a ) reacts similarly with CH3B(C6F5)2 to yield a mixture of the respective C6F5‐ and CH3‐substituted dibenzopentalenes 10 a and 16 . The reaction is thought to proceed through zwitterionic intermediates that exhibit vinyl cation reactivities. Some B(C6F5)3‐substituted species ( 26 , 27 ) consequently formed by in situ deprotonation upon treatment of the respective 1,2‐bis(alkynyl)benzene starting materials ( 24 , 8 ) with the frustrated Lewis pair B(C6F5)3/P(o‐tolyl)3. The overall formation of the C6F5‐substituted products formally require HB(C6F5)2 cleavage in an intermediate dehydroboration step. This was confirmed in the reaction of a thienylethynyl‐containing starting material 21 with B(C6F5)3, which gave the respective annulated pentalene product 23 that had the HB(C6F5)2 moiety 1,4‐added to its thiophene ring. Compounds 12 – 14 , 23 , and 26 were characterized by X‐ray diffraction.  相似文献   

8.
Bulky vinyl phosphanes undergo carbon–carbon coupling with aryl aldehydes with the help of the Lewis acid B(C6F5)3 to give isolable methylene phosphonium products. Dimesityl(vinyl)phosphane undergoes a phospha‐Stork reaction with bulky enones efficiently catalyzed by B(C6F5)3 to eventually yield the corresponding substituted cyclobutane products.  相似文献   

9.
Reactions of bis(phosphinimino)amines LH and L′H with Me2S ? BH2Cl afforded chloroborane complexes LBHCl ( 1 ) and L′BHCl ( 2 ), and the reaction of L′H with BH3 ? Me2S gave a dihydridoborane complex L′BH2 ( 3 ) (LH=[{(2,4,6‐Me3C6H2N)P(Ph2)}2N]H and L′H=[{(2,6‐iPr2C6H3N)P(Ph2)}2N]H). Furthermore, abstraction of a hydride ion from L′BH2 ( 3 ) and LBH2 ( 4 ) mediated by Lewis acid B(C6F5)3 or the weakly coordinating ion pair [Ph3C][B(C6F5)4] smoothly yielded a series of borenium hydride cations: [L′BH]+[HB(C6F5)3]? ( 5 ), [L′BH]+[B(C6F5)4]? ( 6 ), [LBH]+[HB(C6F5)3]? ( 7 ), and [LBH]+[B(C6F5)4]? ( 8 ). Synthesis of a chloroborenium species [LBCl]+[BCl4]? ( 9 ) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 ( 4 ) with three equivalents of BCl3. It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three‐coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4? can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4‐dimethylaminopyridine (DMAP), [LBH ? (DMAP)]+[B(C6F5)4]? ( 10 ). The solid‐state structures of complexes 1 , 5 , and 9 were investigated by means of single‐crystal X‐ray structural analysis.  相似文献   

10.
A general catalytic protocol for the methylation of amines has been developed applying, for the first time, formic acid as the C1 building block and silanes as reducing agents. A broad range of aromatic and aliphatic, both primary and secondary, amines has been converted to the corresponding tertiary amines including [N13C]‐labelled drugs in good to excellent yields under mild conditions.  相似文献   

11.
The B(C6F5)3‐catalyzed silylative reduction of conjugated nitriles has been developed to afford synthetically valuable β‐silyl amines. The reaction is chemoselective and proceeds under mild conditions. Mechanistic elucidation indicates that it proceeds by rapid double hydrosilylation of the conjugated nitrile to an enamine intermediate which is subsequently reduced to the β‐silyl amine, thus forming a new C(sp3)? Si bond. Based on this mechanistic understanding, a preparative route to enamines was also established using bulky silanes.  相似文献   

12.
Described herein is an unprecedented access to BN‐polyaromatic compounds from 1,1′‐biphenylamines by sequential borane‐mediated C(sp2)?H borylation and intramolecular N‐demethylation. The conveniently in situ generated Piers’ borane from a borinic acid reacts with a series of N,N‐dimethyl‐1,1′‐biphenyl‐2‐amines in the presence of PhSiH3 to afford six‐membered amine‐borane adducts bearing a C(sp2)?B bond at the C2′‐position. These species undergo an intramolecular N‐demethylation with a B(C6F5)3 catalyst to provide BN‐isosteres of polyaromatics. According to computational studies, a stepwise ionic pathway is suggested. Photophysical characters of the resultant BN‐heteroarenes shown them to be distinctive from those of all‐carbon analogues.  相似文献   

13.
Gas‐phase reactions of CO3.? with formic acid are studied using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2, which in turn transfer the electron to O3. O3.? reacts with CO2 to form CO3.?. The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.  相似文献   

14.
Dimethylaluminum complexes bearing bidentate amidate, oxypyridine, and salicylaldimine N,O‐ligands and tridentate N,N,N″‐pyridyliminoamide ligands were synthesized and spectroscopically characterized. The complexes were investigated in both neutral and borane‐activated cationic forms, along with bidentate N,N′‐ligated aluminum amidinates, as catalysts for the polymerization of methyl methacrylate, ?‐caprolactone, and propylene oxide. The neutral complexes generally did not carry out polymerization, but the polymerization/oligomerization of all three monomers was achieved when the various catalysts were activated with B(C6F5)3 or [Ph3C]+[B(C6F5)4]?. The N,O‐ligated cations were much less active for polymerization than the analogous, more stable N,N′‐ligated amidinate cations; both types of cationic complexes catalyzed the ring‐opening cationic polymerization of tetrahydrofuran. B(C6F5)3 and [Ph3C]+[B(C6F5)4]? also independently carried out the oligomerization of propylene oxide. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1633–1651, 2002  相似文献   

15.
《化学:亚洲杂志》2018,13(18):2664-2670
A straightforward Lewis acid‐promoted protocol for 3,3′‐bisindolylmethanes (BIMs) synthesis by reductive alkylation of indoles at the C3 position with carboxylic acids in the presence of hydrosilane was developed for the first time. Instead of aldehydes, more readily available, stable, and easy‐to‐handle carboxylic acids have been employed as alternative alkylating agents. As an efficient organocatalyst, B(C6F5)3 enables the reductive alkylation of various substituted indole derivatives with carboxylic acids with up to 98 % yield at room temperature and under neat conditions. This metal‐free strategy offers an alternative approach for the direct functionalization of indoles to BIMs with carboxylic acids and such protocol allows selective reduction of carboxylic acid to aldehyde in combination with C−C bond formation.  相似文献   

16.
Hydride complexes Mo,W(CO)(NO)H(mer‐etpip) (iPr2PCH2CH2)2PPh=etpip) ( 2 a,b(syn) , syn and anti of NO and Ph(etpip) orientions) were prepared and probed in imine hydrogenations together with co‐catalytic [H(Et2O)2][B(C6F5)4] (140 °C, 60 bar H2). 2 a,b(syn) were obtained via reduction of syn/anti‐Mo,W(NO)Cl3(mer‐etpip) and syn,anti‐Mo,W(NO)(CO)Cl(mer‐etpip). [H(Et2O)2][B(C6F5)4] in THF converted the hydrides into THF complexes syn‐[Mo,W(NO)(CO)(etpip)(THF)][B(C6F5)4]. Combinations of the p‐substituents of aryl imines p‐R1C6H4CH=N‐p‐C6H4R2 (R1,R2=H,F,Cl,OMe,α‐Np) were hydrogenated to amines (maximum initial TOFs of 1960 h?1 ( 2 a(syn) ) and 740 h?1 ( 2 b(syn) ) for N‐(4‐methoxybenzylidene)aniline). An ‘ionic hydrogenation’ mechanism based on linear Hammett plots (ρ=?10.5, p‐substitution on the C‐side and ρ=0.86, p‐substitution on the N‐side), iminium intermediates, linear P(H2) dependence, and DKIE=1.38 is proposed. Heterolytic splitting of H2 followed by ‘proton before hydride’ transfers are the steps in the ionic mechanism where H2 ligand addition is rate limiting.  相似文献   

17.
Tandem Friedel‐Crafts (FC) and C?H/C?O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6F5)3) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4‐dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6F5)3 can activate the C=C and C?O bond for FC and C?H/C?O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C?H/C?O coupling.  相似文献   

18.
A borane B(C6F5)3‐catalyzed metathesis reaction between the Si?C bond in the cyclic (alkyl)(amino)germylene (CAAGe) 1 and the Si?H bond in a silane (R3SiH; 2 ) is reported. Mechanistic studies propose that the initial step of the reaction involves Si?H bond activation to furnish an ionic species [ 1 ‐SiR3]+[HB(C6F5)3]?, from which [Me3Si]+[HB(C6F5)3]? and an azagermole intermediate are generated. The former yields Me3SiH concomitant with the regeneration of B(C6F5)3 whereas the latter undergoes isomerization to afford CAAGes bearing various silyl groups on the carbon atom next to the germylene center. This strategy allows the straightforward synthesis of eight new CAAGes starting from 1 .  相似文献   

19.
New Ti and Zr complexes that bear imine–phenoxy chelate ligands, [{2,4‐di‐tBu‐6‐(RCH=N)‐C6H4O}2MCl2] ( 1 : M=Ti, R=Ph; 2 : M=Ti, R=C6F5; 3 : M=Zr, R=Ph; 4 : M=Zr, R=C6F5), were synthesized and investigated as precatalysts for ethylene polymerization. 1H NMR spectroscopy suggests that these complexes exist as mixtures of structural isomers. X‐ray crystallographic analysis of the adduct 1 ?HCl reveals that it exists as a zwitterionic complex in which H and Cl are situated in close proximity to one of the imine nitrogen atoms and the central metal, respectively. The X‐ray molecular structure also indicates that one imine phenoxy group with the syn C?N configuration functions as a bidentate ligand, whereas the other, of the anti C?N form, acts as a monodentate phenoxy ligand. Although Zr complexes 3 and 4 with methylaluminoxane (MAO) or [Ph3C]+[B(C6F5)4]?/AliBu3 displayed moderate activity, the Ti congeners 1 and 2 , in association with an appropriate activator, catalyzed ethylene polymerization with high efficiency. Upon activation with MAO at 25 °C, 2 displayed a very high activity of 19900 (kg PE) (mol Ti)?1 h?1, which is comparable to that for [Cp2TiCl2] and [Cp2ZrCl2], although increasing the polymerization temperature did result in a marked decrease in activity. Complex 2 contains a C6F5 group on the imine nitrogen atom and mediated nonliving‐type polymerization, unlike the corresponding salicylaldimine‐type complex. Conversely, with [Ph3C]+[B(C6F5)4]?/AliBu3 activation, 1 exhibited enhanced activity as the temperature was increased (25–75 °C) and maintained very high activity for 60 min at 75 °C (18740 (kg PE) (mol Ti)?1 h?1). 1H NMR spectroscopic studies of the reaction suggest that this thermally robust catalyst system generates an amine–phenoxy complex as the catalytically active species. The combinations 1 /[Ph3C]+[B(C6F5)4]?/AliBu3 and 2 /MAO also worked as high‐activity catalysts for the copolymerization of ethylene and propylene.  相似文献   

20.
A highly diastereoselective and enantioselective Brønsted acid catalyzed reductive condensation of N?H imines was developed. This reaction is catalyzed by a chiral disulfonimide (DSI), uses Hantzsch esters as a hydrogen source, and delivers useful C2‐symmetric secondary amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号