首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
Summary Complex compounds of cobalt(II), copper(II) and zinc(II) with bis(benzoin)thiocarbohydrazide have been synthesised. The ligand is probably coordinated to the metal ions as an ONNO tetradentate donor, giving rise to binuclear metal complexes with a halogen bridge. Structures have been assigned on the basis of analyses, conductance, magnetic susceptibility, i.r., electronic spectra and molecular weight data.  相似文献   

2.
A series of pincer ((tBu)PCP)Pd(II)-OR complexes ((tBu)PCP = 2,6-bis(CH(2)P(t)Bu(2))C(6)H(3), R = H, CH(3), C(6)H(5), CH(2)C(CH(3))(3), CH(2)CH(2)F, CH(2)CHF(2), CH(2)CF(3)) were synthesized to explore the generality of hydrogenolysis reactions of palladium-oxygen bonds. Hydrogenolysis of the Pd hydroxide complex to generate the Pd hydride complex and water was shown to be inhibited by formation of a water-bridged, hydrogen-bonded Pd(II) hydroxide dimer. The Pd alkoxide and aryloxide complexes exhibited more diverse reactivity. Depending on the characteristics of the -OR ligand (steric bulk, electron-donating ability, and/or the presence of β-hydrogen atoms), hydrogenolysis was complicated by hydrolysis by adventitious water, a lack of reactivity with hydrogen, or a competing dissociative β-hydride abstraction reaction pathway. Full selectivity for hydrogenolysis was observed with the partially fluorinated Pd(II) 2-fluoroethoxide complex. The wide range of Pd-OR substrates examined helps to clarify the variety of reaction pathways available to late-transition-metal alkoxides as well as the conditions necessary to tune the reactivity to hydrogenolysis, hydrolysis, or dissociative β-hydride abstraction.  相似文献   

3.
Kimura E  Gotoh T  Aoki S  Shiro M 《Inorganic chemistry》2002,41(12):3239-3248
To elucidate intrinsic recognition of carboxamides by zinc(II) in carbonic anhydrase (CA) (as inhibitors) and carboxypeptidase A (CPA) (as substrates), a new series of Zn(2+)-carboxamide-appended cyclen complexes have been synthesized and characterized (cyclen = 1,4,7,10-tetraazacyclododecane). Two types of Zn(2+)-carboxamide interactions have been found. In the first case represented by a zinc(II) complex of carbamoylmethyl-1,4,7,10-tetraazacyclododecane (L(1)), the amide oxygen binds to zinc(II) at slightly acidic pH (to form ZnL(1)), and the deprotonated amide N(-) binds to zinc(II) at alkaline pH (to form ZnH(-1)L(1)) with pK(a) = 8.59 at 25 degrees C and I = 0.1 (NaNO(3)), as determined by potentiometric pH titrations, infrared spectral changes, and (13)C and (1)H NMR titrations. The X-ray crystal structure of ZnH(-1)L(3) (where L(3) = N-(4-nitrophenyl)carbamoylmethyl cyclen, pK(a) = 7.01 for ZnL(3) <==> ZnH(-1)L(3)) proved that the zinc(II) binds to the amidate N(-) (Zn-N(-) distance of 1.974(3) A) along with the four nitrogen atoms of cyclen (average Zn-N distance 2.136 A). Crystal data: monoclinic, space group P2(1)/n (No. 14) with a = 10.838(1) A, b = 17.210(2) A, c = 12.113(2) A, b = 107.38(1) degrees, V = 2156.2(5) A(3), Z = 4, R = 0.042, and R(w) = 0.038. These model studies provide the first chemical support that carboxamides are CA(-) inhibitors by occupying the active Zn(2+) site both in acidic and alkaline pH to prevent the occurrence of the catalytically active Zn(2+)-OH(-) species. In the second case represented by a zinc(II) complex of 1-(N-acetyl)aminoethylcyclen, ZnL(6), the pendant amide oxygen had little interaction with zinc(II) at acidic pH. At alkaline pH, the monodeprotonation yielded a zinc(II)-bound hydroxide species ZnL(6)(OH(-)) (pK(a) = 7.64) with the amide pendant remaining intact. The ZnL(6)(OH(-)) species showed the same nucleophilic activity as Zn(2+)-cyclen-OH(-). The second case may mimic the Zn(2+)-OH(-) mechanism of CPA, where the nucleophilic Zn(2+)-OH(-) species does not act as a base to deprotonate a proximate amide.  相似文献   

4.
The electrochemical behaviour at a platinum electrode in methylene chloride of zinc(II) and nickel(II) p-diethylaminodithiobenzoate complexes has been studied. For the zinc(II) complex the electroactive site of oxidation is the ligand and the tetrathian dication is produced. In contrast, for the nickel(II) complex the electroactive site is the metal and a stable nickel(IV) species is obtained.  相似文献   

5.
Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex (Zn2L3+) has been studied (L = alkoxide species of 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-ol). Potentiometric pH titration study disclosed a 1 : 1 phenyl phosphate complexation with Zn2L3+ in aqueous solution. The dissociation constant (= [Zn2L3+][PhOPO3(2-)]/[Zn2L3+-PhOPO3(2-)]) is an extremely small value of 2.5 x 10(-8) mol dm(-3) at 25 degrees C with I = 0.10 (NaNO3). The X-ray crystal analysis of the dizinc(II) complex with p-nitrophenyl phosphate showed that the phosphate dianion binds as a bridging ligand to the two zinc(II) ions.  相似文献   

6.
A potentiometric and spectrophotometric investigation on the formation of zinc(II) complexes with Semi-Xylenol Orange (SXO or H(4)L) is reported. In an aqueous solution (mu = 0.1), three 1:1 complex species, MH(2)L, MHL(-), ML(2-), and a 1:2 complex, ML(6-)(2), seem to exist. In a strongly alkaline medium (above pH 12.5) the complexes may dissociate to give zinc hydroxide and L(4-). The formation of a hydroxy complex is not observed. The absorption maxima are at 445 nm (MH(2)L), 466 nm (MHL(-)) and 561 nm (ML(2-)), the molar absorptivities being 2.34 x 10(4), 2.42 x 10(4) and 3.14 x 10(4) 1.mole(-1) .cm(-1) respectively. The formation constants are (at 25 +/- 0.1 degrees ) log K(M)(ML) = 11.84, log K(M)(MHL) = 7.13, log K(M)(MH(2)L) = 2.70, log K(M)(ML(2)) = 16.60.  相似文献   

7.
The thermal properties of nickel(II) and zinc(II) complexes of saccharin (sacc) (o-benzoic sulphimide) have been studied and compared both with those of cobalt(II) and copper(II) previously studied and with those of ternary complexes of nickel(II) and zinc(II) having both saccharin and pyridine as ligands. The thermal behaviour is discussed in terms of the interaction between metal and ligands, interaction studied by IR spectroscopy, and by reflectance spectroscopy.The classical thermal stability scale Co(II) > Ni(II) > Cu(II) > Zn(II) is always obtained.  相似文献   

8.
Inactivation of beta-lactam antibiotics by metallo-beta-lactamase enzymes is a well-recognized pathway of antibiotic resistance in bacteria. As part of extensive mechanistic studies, the hydrolysis of a beta-lactam substrate nitrocefin (1) catalyzed by dinuclear zinc(II) model complexes was investigated in nonaqueous solutions. The initial step involves monodentate coordination of the nitrocefin carboxylate group to the dizinc center. The coordinated substrate is then attacked intramolecularly by the bridging hydroxide to give a novel intermediate (2') characterized by its prominent absorbance maximum at 640 nm, which affords a blue color. The NMR and IR spectroscopic data of 2' are consistent with it being zinc(II)-bound N-deprotonated hydrolyzed nitrocefin that forms from the tetrahedral intermediate upon C-N bond cleavage. Protonation of the leaving group is the rate-limiting step in DMSO solution and occurs after the C-N bond-breaking step. Addition of strong acids results in rapid conversion of 2' into hydrolyzed nitrocefin (3). The latter can be converted back to the blue species (2') upon addition of base. The low pK(a) value for the amino group in hydrolyzed nitrocefin is explained by its involvement in extended conjugation and by coordination to zinc(II). The blue intermediate (2') in the model system resembles well that in the enzymatic system, judging by its optical properties. The greater stability of the intermediate in the model, however, allowed its characterization by (13)C NMR and infrared, as well as electronic, spectroscopy.  相似文献   

9.
The synthesis of 5,10,15,20-tetraphenyl-2-thia-21-carbaporphyrin [S-confused thiaporphyrin, (SCPH)H] was optimized. The formation of the phlorin was detected, which was saturated at the meso carbon adjacent to thiophene. Phlorin converted readily to (SCPH)H in the final oxidation process. Insertion of cadmium(II) and zinc(II) into S-confused thiaporphyrin yielded (SCPH)Cd(II)Cl and (SCPH)Zn(II)Cl complexes. The macrocycle acted as a monoanionic ligand. Three nitrogen atoms and the C(21)H fragment of the inverted thiophene occupied equatorial positions. The compensation of the metal charge required the apical chloride coordination. The characteristic C(21)H resonances of the inverted thiophene ring were located at 1.71 and 1.86 ppm in the 1H NMR spectra of (SCPH)Cd(II)Cl and (SCPH)Zn(II)Cl, respectively. The proximity of the thiophene fragment to the metal ion induced direct scalar couplings between the spin-active nucleus of the metal (111/113Cd) and the adjacent 1H nucleus (J(CdH) = 8.97 Hz). The interaction of the metal ion and C(21)H also was reflected by significant changes of C(21) chemical shifts: (SCPH)Zn(II)Cl, 92.9 ppm and (SCPH)Cd(II)Cl, 88.2 ppm (free ligand (SCPH)H, 123.7 ppm). The X-ray analysis performed for (SCPH)Cd(II)Cl confirmed the side-on cadmium-thiophene interaction. The Cd...C(21) distance (2.615(7) A) exceeded the typical Cd-C bond lengths, but was much shorter than the corresponding van der Waals contact. The density functional theory (DFT) was applied to model the molecular structures of zinc(II) and cadmium(II) complexes of S-confused thiaporphyrin. Subsequent AIM analysis demonstrated that the accumulation of electron density between the metal and thiophene, which is necessary to induce these couplings, was fairly small. A bond path linked the cadmium(II) ion to the proximate C(22) carbon of the thiophene.  相似文献   

10.
Yokota S  Tachi Y  Itoh S 《Inorganic chemistry》2002,41(6):1342-1344
Copper(II) and zinc(II) complexes supported by a popular beta-diketiminate ligand (1(-), 2-mesitylamino-4-mesitylimino-2-pentene), [CuII(1)(AcO)] and [[ZnII(1)]2(mu-MeO)(mu-AcO)], have been demonstrated to undergo an oxidative degradation to give a ketone diimine derivative (2) under aerobic conditions. The crystal structures of the mononuclear copper(II) and dinuclear zinc(II) complexes of the beta-diketiminate ligand as well as the copper(II) complex of the modified ligand have been determined by X-ray crystallographic analysis. Mechanism for the oxidative degradation reaction of the beta-diketiminate ligand is also discussed.  相似文献   

11.
A general, direct, and high-yield synthesis of bis(salicylaldimine) zinc complexes from the ligands and Et(2)Zn is reported. This synthetic method is particularly valuable, not only because it allows the efficient preparation of salen-type complexes of zinc but also because it can be used to prepare bifunctional pyridine-modified zinc(II) bis(salicylidene) complexes, which are potentially useful compounds for applications in asymmetric catalysis and materials chemistry. The synthesis and complete structural characterization of a new series of pyridine-modified zinc(II) bis(salicylidene) ligands is discussed.  相似文献   

12.
Kim H  Lee C 《Organic letters》2002,4(24):4369-4371
[reaction: see text] A highly chemo- and stereoselective palladium-catalyzed allylic etherification reaction is described. The use of zinc(II) alkoxides proved effective in promoting the addition of the oxygen nucleophile derived from aliphatic alcohols to eta(3)-allylpalladium complexes. Using diethylzinc (0.5 equiv), 5 mol % of Pd(OAc)(2), and 7.5 mol % of 2-di(tert-butyl)phosphinobiphenyl in THF, the cross-coupling reaction between various aliphatic alcohols and allylic acetates proceeded at ambient temperature to furnish allylic ethers with high stereoselectivity.  相似文献   

13.
A synthetic strategy involving the use of sterically hindered N-donor and terphenylcarboxylate ligands has been used to prepare complexes of iron(II) and zinc(II) that feature N2(carboxylate) donors. X-ray crystallographic and NMR data show that the 2-His-1-carboxylate facial triad found in metalloenzyme active sites is closely modeled by the mononuclear complexes. In addition, by virtue of the flexibility of the ligands used, the geometries and coordination environments of the complexes display carboxylate binding mode differences such as those seen in the enzymes.  相似文献   

14.
Linear correlations have been revealed between thermodynamic and kinetic parameters of the nucleophilic substitution and coordination reactions of zinc(II) tetraphenylporphyrinate with heteroaromatic Noxides in different solvents. Complex formation of zinc(II) tetraphenylporphyrinate with n-donor ligands in chloroform can serve as model system in spectroscopy studies of nucleophilicity and basicity of the compounds capable of the n,ν type complexes formation.  相似文献   

15.
《Thermochimica Acta》2005,429(1):103-109
Thermal behaviour of three silanethiolate zinc complexes i.e., bis(tri-tert-butoxysilanethiolato)bis(pyridine) zinc(II), bis(tri-tert-butoxysilanethiolato)bis(N-methylimidazole) zinc(II) and bis(tri-tert-butoxysilanethiolato) (2-methylpyridine) zinc(II) was studied. In order to determine the steps involved in thermal decay, decomposition intermediates were identified by means of IR spectroscopy and solid residues were analysed. Enthalpies of undergoing processes were estimated on the basis of DTA curves. The results of the study were applied to the synthesis of a new complex - bis(tri-tert-butoxysilanethiolato)(pyridine) zinc(II). NMR and IR spectra of this complex were measured and crystal and molecular structures were determined.  相似文献   

16.
The stable dinuclear complex [Zn2(BPAM)(mu-OH)(mu-O2PPh2)](ClO4)2, where BPAN = 2,7-bis[2-(2-pyridylethyl)-aminomethyl]-1,8-naphthyridine, was chosen as a model to investigate the reactivity of (mu-hydroxo)dizinc(II) centers in metallohydrolases. Two reactions, the hydrolysis of phosphodiesters and the hydrolysis of beta-lactams, were studied. These two processes are catalyzed in vivo by zinc(II)-containing enzymes: P1 nucleases and beta-lactamases, respectively. The former catalyzes the hydrolysis of single-stranded DNA and RNA. beta-Lactamases, expressed in many types of pathogenic bacteria, are responsible for the hydrolytic degradation of beta-lactam antibiotic drugs. In the first step of phosphodiester hydrolysis promoted by the dinuclear model complex, the substrate replaces the bridging diphenylphosphinate. The bridging hydroxide serves as a general base to deprotonate water, which acts as a nucleophile in the ensuing hydrolysis. The dinuclear model complex is only 1.8 times more reactive in hydrolyzing phosphodiesters than a mononuclear analogue, Zn(bpta)(OTf)2, where bpta = N,N-bis(2-pyridylmethyl)-tert-butylamine. Hydrolysis of nitrocefin, a beta-lactam antibiotic analogue, catalyzed by [Zn2(BPAN)(mu-OH)(mu-O2PPh2)](ClO4)2 involves monodentate coordination of the substrate via its carboxylate group, followed by nucleophilic attack of the zinc(II)-bound terminal hydroxide at the beta-lactam carbonyl carbon atom. Collapse of the tetrahedral intermediate results in product formation. Mononuclear complexes Zn(cyclen)-(NO3)2 and Zn(bpta)(NO3)2, where cyclen = 1,4,7,10-tetraazacyclododecane, are as reactive in the beta-lactam hydrolysis as the dinuclear complex. Kinetic and mechanistic studies of the phosphodiester and beta-lactam hydrolyses indicate that the bridging hydroxide in [Zn2(BPAN)(mu-OH)(mu-O2PPh2)](ClO4)2 is not very reactive, despite its low pKa value. This low reactivity presumably arises from the two factors. First, the briding hydroxide and coordinated substrate in [Zn2(BPAN)(mu-OH)(substrate)]2+ are not aligned properly to favor nucleophilic attack. Second, the nucleophilicity of the bridging hydroxide is diminished because it is simultaneously bound to the two zinc(II) ions.  相似文献   

17.
Novel trinuclear zinc(II) complexes [Zn(3)L(2)(OAc)(2)] (L = salamo, 3-MeOsalamo) were synthesized, and their structures were determined by X-ray crystallography. Ligation of methoxy groups in the salamo ligand causes a significantly different coordination mode of the central zinc atom in the trinuclear system. The complexes between the salamo ligands and zinc(II) in methanol formed exclusively and very cooperatively. In contrast to other imine ligands, the mononuclear [ZnL] and other complexes are not observed at all.  相似文献   

18.
Summary Coordination compounds formed by the interaction of 2,2bipyridylamine with silver(I), zinc(II) and cadmium(II) nitrates have been prepared and characterized by molecular conductance and i.r. spectral measurements down to 200 cm–1 in the solid state. Silver([) and zinc(II) nitrates formed 1 : 1 complexes, while cadmium(II) nitrate gave a 1 : 2 complex with 2,2-bipyridylamine. Molar conductivities indicate that the silver complex behaves as a uniunivalent electrolyte while the zinc(II) and cadmium(II) complexes behave as unidivalent electrolytes in methanol and dimethylformamide. All the complexes are considered monomeric with terminally bonded monodentate nitrato groups. Four-coordinate tetrahedral, three-coordinate planar and six-coordinate octahedral stereo chemistries are suggested for the zinc(II), silver(l) and cadmium(II) nitrate complexes with 2,2-bipyridylamine, respectively.  相似文献   

19.
The syntheses and electrooptic properties of a new family of nonlinear optical chromophores are reported. These species feature an ethyne-elaborated, highly polarizable porphyrinic component and metal polypyridyl complexes that serve as integral donor and acceptor elements. Examples of this structural motif include ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Ru-PZn); osmium(II) [5-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2'-terpyridine)(2+) bis-hexafluorophosphate (Os-PZn); ruthenium(II) [5-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phen-yl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Ru-PZn-A); osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Os-PZn-A); and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))osmium(II)-15-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-10,20-bis (2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2'-terpyridine)(4+) tetrakis-hexafluorophosphate (Ru-PZn-Os). The frequency dependence of the dynamic hyperpolarizability of these compounds was determined from hyperRayleigh light scattering (HRS) measurements carried out at fundamental incident irradiation wavelengths (lambda(inc)) of 800, 1064, and 1300 nm. These data show that (i) coupled oscillator photophysics and metal-mediated cross-coupling can be exploited to elaborate high beta(0) supermolecules that exhibit significant excited-state electronic communication between their respective pigment building blocks; (ii) high-stability metal polypyridyl compounds constitute an attractive alternative to electron releasing dialkyl- and diarylamino groups, the most commonly used donor moieties in a wide range of established nonlinear optical dyes; (iii) this design strategy enables ready elaboration of chromophores having extraordinarily large dynamic hyperpolarizabilities (beta(lambda) values) at telecommunication relevant wavelengths; and (iv) porphyrin B- and Q-state-derived static hyperpolarizabilities (beta(0) values) can be designed to have the same or opposite sign in these species, thus providing a new means to regulate the magnitude of lambda(inc)-specific dynamic hyperpolarizabilities.  相似文献   

20.
Xia J  Xu Y  Li S  Sun W  Yu K  Tang W 《Inorganic chemistry》2001,40(10):2394-2401
A complexation study on the new Zn(II) complexes of asymmetric tripodal ligand 2-[bis(2-aminoethyl)amino]ethanol (L) has revealed that the alcoholic OH group of complex ZnL exhibits remarkable acidity with a very low pK(a) value of 7.7 at 25 degrees C. Both the monomeric complex [ZnH(-0.25)L(H(2)O)](ClO(4))(1.75) (I) and the dimeric alkoxide-coordinating complex [Zn(2)(H(-1)L)(2)](ClO(4))(2) (II) were synthesized, and their structures were determined by X-ray diffraction. The Zn(II)-bound alkoxide, as the reactive nucleophile toward the hydrolysis of esters, has shown a second-order rate constant of 0.13 +/- 0.01 M(-1) s(-1) in 10% (v/v) CH(3)CN at 25 degrees C in 4-nitrophenyl acetate (NA) hydrolysis, which is almost the same as the corresponding value for the very reactive alcohol-dependent [12]aneN(3)-Zn complex. Present work shows for the first time that Zn(II) complexes of the asymmetric tripodal polyamine bearing an ethoxyl pod can also serve as good models of Zn(II)-containing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号