首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc selenide, cadmium sulfide, and cadmium selenide clusters were produced by direct laser ablation and analyzed in a time-of-flight mass spectrometer. The positive-ion mass spectra indicated that clusters composed of six and thirteen monomer units were ultrastable in all cases. The geometries and energies of the neutral and positively charged M(n)X(n) clusters up to n = 16 were obtained computationally at the B3LYP level of theory using the SKBJ basis set for the metal atoms and the SKBJ(d,2df) basis set for the chalcogen atoms. Small neutral and positive clusters (n = 1-4) have planar geometries, neutral three-dimensional clusters have the geometry of closed-cage polyhedra, and cationic three-dimensional clusters have structures with a pair of two-coordinated atoms. Physical properties of the clusters as a function of size are reported. The relative stability of the positive stoichiometric clusters provides a thermodynamic explanation for the relative stability observed experimentally from the laser-ablation mass spectrometry.  相似文献   

2.
The stable structures, energies, and electronic properties of neutral, cationic, and anionic clusters of Al(n) (n = 2-10) are studied systematically at the B3LYP/6-311G(2d) level. We find that our optimized structures of Al5(+), Al9(+), Al9(-), Al10, Al10(+), and Al10(-) clusters are more stable than the corresponding ones proposed in previous literature reports. For the studied neutral aluminum clusters, our results show that the stability has an odd/even alternation phenomenon. We also find that the Al3, Al7, Al7(+), and Al7(-) structures are more stable than their neighbors according to their binding energies. For Al7(+) with a special stability, the nucleus-independent chemical shifts and resonance energies are calculated to evaluate its aromaticity. In addition, we present results on hardness, ionization potential, and electron detachment energy. On the basis of the stable structures of the neutral Al(n) (n = 2-10) clusters, the Al(n)O (n = 2-10) clusters are further investigated at the B3LYP/6-311G(2d), and the lowest-energy structures are searched. The structures show that oxygen tends to either be absorbed at the surface of the aluminum clusters or be inserted between Al atoms to form an Al(n-1)OAl motif, of which the Al(n-1) part retains the stable structure of pure aluminum clusters.  相似文献   

3.
Electronic and geometrical structures of neutral, negatively, and positively charged (GaAs)n clusters are computed using density functional theory with generalized gradient approximation. All-electron computations are performed on (GaAs)2-(GaAs)9 while effective core potentials (ECPs) are used for (GaAs)9-(GaAs)15. Calibration calculations on GaAs and (GaAs)9 species support the use of the ECP for the larger clusters. The ground-state geometries of (GaAs)n(-) and/or (GaAs)n+ are different from the corresponding neutral ground-state geometry, except for n=7, 9, 12, 14, and 15, where the neutral and ions have similar structures. Beginning with n=6, all atoms are three coordinate, except for (GaAs)10+ and (GaAs)13+. For the larger species, there is a competition between fullerenes built from hexagons and rhombi and geometrical configurations where Ga-Ga and As-As bonds are formed, which results in the formation of pentagons. As expected, the static polarizability varies in the order of anion>neutral>cation, but the values are rather similar for all three charge states. The thermodynamic stability for the loss of GaAs is reported.  相似文献   

4.
The ground-state structures of neutral, cationic, and anionic phosphorus clusters P(n), P(n)(+), and P(n)(-) (n = 3-15) have been calculated using the B3LYP/6-311+G* density functional method. The P(n)(+) and P(n)(-) (n = 3-15) clusters with odd n were found to be more stable than those with even n, and we provide a satisfactory explanation for such trends based on concepts of energy difference, ionization potential, electron affinity, and incremental binding energy. The result of odd/even alternations is in good accord with the relative intensities of cationic and anionic phosphorus clusters observed in mass spectrometric studies.  相似文献   

5.
The geometric and electronic structures of Si(n), Si(n) (+), and AlSi(n-1) clusters (2< or =n< or =13) have been investigated using the ab initio molecular orbital theory under the density functional theory formalism. The hybrid exchange-correlation energy function (B3LYP) and a standard split-valence basis set with polarization functions [6-31G(d)] were employed for this purpose. Relative stabilities of these clusters have been analyzed based on their binding energies, second difference in energy (Delta (2)E) and fragmentation behavior. The equilibrium geometry of the neutral and charged Si(n) clusters show similar structural growth. However, significant differences have been observed in the electronic structure leading to their different stability pattern. While for neutral clusters, the Si(10) is magic, the extra stability of the Si(11) (+) cluster over the Si(10) (+) and Si(12) (+) bears evidence for the magic behavior of the Si(11) (+) cluster, which is in excellent agreement with the recent experimental observations. Similarly for AlSi(n-1) clusters, which is isoelectronic with Si(n) (+) clusters show extra stability of the AlSi(10) cluster suggesting the influence of the electronic structures for different stabilities between neutral and charged clusters. The ground state geometries of the AlSi(n-1) clusters show that the impurity Al atom prefers to substitute for the Si atom, that has the highest coordination number in the host Si(n) cluster. The fragmentation behavior of all these clusters show that while small clusters prefers to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size.  相似文献   

6.
All geometry structures of (CoMn)n (n=1-5) clusters were optimized, and the energy, frequence and magnetism of (CoMn)n (n=1-5) clusters were calculated by using the local spin density approximation and generalized gradient approximation of density functional theory. The same ground state structures of CoMn alloy clusters were confirmed in two methods, and magnetism of CoMn alloy ground state clusters was studied systemically. In order to understand structure and magnetism of CoMn alloy clusters better, Co2n (n=1-5) and Mn2n (n=1-5) clusters were calculated by the same method as alloy clusters, whose ground state structure and magnetism were confirmed. Moreover, the ground state structure and magnetism of clusters with the corresponding CoMn alloy clusters was compared. Results indicated that for (CoMn)n (n=1-4) clusters, geometry structures of CoMn alloy clusters are the same as the corresponding pure clusters still, (CoMn)3 and (CoMn)4 exhibit magnetic bistability, show ferromagnetic and anti-ferromagnetic coupling, local magnetic moment of Co, Mn atoms in CoMn alloy clusters almost preserves magnetism of pure clusters still.  相似文献   

7.
Structure and stability of (AlN)n clusters   总被引:3,自引:0,他引:3  
AIN and Al2N2 have been observed in the record of time-of-flight mass-spectra as positive ions. Associating with density functional theory(DFT) B3LYP method with 6-31G* basis set, we have carried out the optimizing calculations of the geometry, electronic state and vibrational frequency for (AIN)n (n = 1-15) clusters, moreover, discussed the character of the chemical bond and thermodynamical stability and explained the experimental mass spectra. The results show that there do not exist AI-AI and N-N bonds and only exists AI-N bond in the ground state structures of (AIN)n clusters; and the "magical number" regularity of (AIN)n is those whose atom number Is 4, 8, 12,16, 20, etc, all of which are times of four.  相似文献   

8.
The Gaussian-3 (G3) model chemistry method has been used to calculate the relative deltaG(o) values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3-5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20,736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.  相似文献   

9.
Ab initio simulations and calculations were used to study the structures and stabilities of copper oxide clusters, Cu(n)O(n) (n = 1-8). The lowest energy structures of neutral and charged copper oxide clusters were determined using primarily the B3LYP/LANL2DZ model chemistry. For n ≥ 4, the clusters are nonplanar. Selected electronic properties including atomization energies, ionization energies, electron affinities, and Bader charges were calculated and examined as a function of n.  相似文献   

10.
We present the results of our theoretical calculations on structural and electronic properties of ligand-free Zn(n)S(n) [with n ranging from 4 to 104 (0.8-2.0-nm diameter)] clusters as a function of size of the clusters. We have optimized the structure whereby our initial structures are spherical parts of either zinc-blende or wurtzite structure. We have also considered some hollow bubblelike structures. The calculations are performed by using a parametrized linear combination of atomic orbitals-density-functional theory-local-density approximation-tight-binding method. We have focused on the variation of radial distribution function, Mulliken populations, electronic energy levels, band gap, and stability as a function of size for both zinc-blende and wurtzite-derived ZnS clusters. We have also reported the results of some nonstoichiometric Zn(m)S(n) (with m+n=47, 99, 177) clusters of zinc-blende modification.  相似文献   

11.
The size-dependent electronic, structural, and magnetic properties of Mn-doped gold clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. A number of new isomers are obtained for neutral MnAu(n) (n = 1-16) clusters to probe the structural evolution. The two-dimensional (2D) to three-dimensional (3D) transition occurs in the size range n = 7-10 with manifest structure competitions. From size n = 13 to n = 16, the MnAu(n) prefers a gold cage structure with Mn atom locating at the center. The relative stabilities of the ground-state MnAu(n) clusters show a pronounced odd-even oscillation with the number of Au atoms. The magnetic moments of MnAu(n) clusters vary from 3 μ(B) to 6 μ(B) with the different cluster size, suggesting that nonmagnetic Au(n) clusters can serve as a flexible host to tailor the dopant's magnetism, which has potential applications in new nanomaterials with tunable magnetic properties.  相似文献   

12.
The molecular structures of neutral Si n Li ( n = 2-8) species and their anions have been studied by means of the higher level of the Gaussian-3 (G3) techniques. The lowest energy structures of these clusters have been reported. The ground-state structures of neutral clusters are "attaching structures", in which the Li atom is bound to Si n clusters. The ground-state geometries of anions, however, are "substitutional structures", which is derived from Si n+1 by replacing a Si atom with a Li (-). The electron affinities of Si n Li and Si n have been presented. The theoretical electron affinities of Si n are in good agreement with the experiment data. The reliable electron affinities of Si n Li are predicted to be 1.87 eV for Si 2Li, 2.06 eV for Si 3Li, 2.01 eV for Si 4Li, 2.61 eV for Si 5Li, 2.36 eV for Si 6Li, 2.21 eV for Si 7Li, and 3.18 eV for Si 8Li. The dissociation energies of Li atom from the lowest energy structures of Si n Li and Si atom from Si n clusters have also been estimated respectively to examine relative stabilities.  相似文献   

13.
We performed an unbiased search for low-energy structures of medium-sized neutral Si n and Ge n clusters ( n = 25-33) using a genetic algorithm (GA) coupled with tight-binding interatomic potentials. Structural candidates obtained from our GA search were further optimized by first-principles calculations using density functional theory (DFT). Our approach reproduces well the lowest-energy structures of Si n and Ge n clusters of n = 25-29 compared to previous studies, showing the accuracy and reliability of our approach. In the present study, we pay more attention to determine low-lying isomers of Si n and Ge n ( n = 29-33) and study the growth patterns of these clusters. The B3LYP calculations suggest that the growth pattern of Si n ( n = 25-33) clusters undergoes a transition from prolate to cage at n = 31, while this transition appears at n = 26 from the PBE-calculated results. In the size range of 25-33, the corresponding Ge n clusters hold the prolate growth pattern. The relative stabilities and different structural motifs of Si n and Ge n ( n = 25-33) clusters were studied, and the changes of small cluster structures, when acting as building blocks of large clusters, were also discussed.  相似文献   

14.
Simulated annealing Monte Carlo conformer searches using the "mag-walking" algorithm are employed to locate the global minima of molecular clusters of ammonium chloride of the types (NH(4)Cl)(n), (NH(4)(+))(NH(4)Cl)(n), and (Cl(-))(NH(4)Cl)(n) with n = 1-13. The M06-2X density functional theory method is used to refine and predict the structures, energies, and thermodynamic properties of the neutral, cation, and anion clusters. For selected small clusters, the resulting structures are compared to those obtained from a variety of models and basis sets, including RI-MP2 and B3LYP calculations. M06-2X calculations predict enhanced stability of the (NH(4)(+))(NH(4)Cl)(n) clusters when n = 3, 6, 8, and 13. This prediction corresponds favorably to anomalies previously observed in thermospray mass spectroscopy experiments. The (NH(4)Cl)(n) clusters show alternations in stability between even and odd values of n. Clusters of the type (Cl(-))(NH(4)Cl)(n) display a magic number distribution different from that of the cation clusters, with enhanced stability predicted for n = 2, 6, and 11. None of the observed cluster structures resemble the room-temperature CsCl structure of NH(4)Cl(s), which is consistent with previous work. Numerous clusters have structures reminiscent of the higher-temperature, rock-salt phase of the solid ammonium halides.  相似文献   

15.
The structures and energies of Be(n)Si(n) and Be(2n)Si(n) (n = 1-4) clusters have been examined in ab initio theoretical electronic structure calculations. Cluster geometries have been established in B3LYP/6-31G(2df) calculations and accurate relative energies determined by the G3XMP2 method. The two atoms readily bond to each other and to other atoms of their own kind. The result is a great variety of low-energy clusters in a variety of structural types.  相似文献   

16.
Theoretical study on the structures of neutral and singly charged Si(n)Li(p)((+)) (n=1-6, p=1-2) clusters have been carried out in the framework of the density functional theory (DFT) with the B3LYP functional. The structures of the neutral Si(n)Li(p) and cationic Si(n)Li(p)(+) clusters are found to keep the frame of the corresponding Si(n), Li species being adsorbed at the surface. The localization of the lithium cation is not the same one as that of the neutral atom. The Li(+) ion is preferentially located on a Si atom, while the Li atom is preferentially attached at a bridge site. A clear parallelism between the structures of Si(n)Na(p) and those of Si(n)Li(p) appears. The population analysis show that the electronic structure of Si(n)Li(p) can be described as Si(n)(p)(-)+pLi(+) for the small sizes considered. Vertical and adiabatic ionization potentials, adsorption energies, as well as electric dipole moments and static dipolar polarizabilities, are calculated for each considered isomer of neutral species.  相似文献   

17.
Density-functional theory with scalar-relativistic pseudopotential and a generalized gradient correction is used to calculate the neutral and cationic Bi(n) clusters (2< or =n< or =24), with the aim to elucidate their structural evolution, relative stability, and magnetic property. The structures of neutral Bi clusters are found to be similar to that of other group-V elemental clusters, with the extensively studied sizes of n=4 and 8 having a tetrahedron and wedgelike structure, respectively. Generally, larger Bi clusters consist of a combination of several stable units of Bi(4), Bi(6), and Bi(8), and they have a tendency to form an amorphous structure with the increase of cluster sizes. The curves of second order energy difference exhibit strong odd-even alternations for both neutral and cationic Bi clusters, indicating that even-atom (odd-atom) sizes are relatively stable in neutral clusters (cationic clusters). The calculated magnetic moments are 1micro (B) for odd-atom clusters and zero for even-atom clusters. We propose that the difference in magnetism between experiment and theory can be greatly improved by considering the orbital contribution. The calculated fragmentation behavior agrees well with the experiment, and for each cationic cluster the dissociation into Bi(4) or Bi(7) (+) subclusters confirms the special stability of Bi(4) and Bi(7) (+). Moreover, the bond orders and the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital show that small Bi clusters would prefer semiconductor characters to metallicity.  相似文献   

18.
The equilibrium geometries, stabilities, and electronic properties of the TaSi(n)+ (n = 1-13, 16) clusters are investigated systematically by using the relativistic density functional method with generalized gradient approximation. The small-sized TaSi(n)+ clusters with slight geometrical adjustments basically keep the frameworks that are analogous to the neutrals while the medium-sized charged clusters significantly deform the neutral geometries, which are confirmed by the calculated AIP and VIP values. Furthermore, the optimized geometries of the charged clusters agree with the experimental results of Hiura and co-workers (Hiura, H.; Miyazaki, T.; Kanayama, T. Phys. Rev. Lett. 2001, 86, 1733). The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gaps of the charged clusters are generally increased as the cluster size goes from n = 1 to 13; and the large HOMO-LUMO gaps of charged clusters resulting from the positive charge indicate that their chemical stabilities are stronger than their neutral counterparts, especially for n = 4, 6, and 7 clusters. Additionally, the contributions of the d orbitals of the Ta atom to the HOMO and LUMO reveal that the chemical activity of the d orbitals of the Ta atom decreases gradually as the number of silicon atoms increases. This interesting finding is in good agreement with the recent experimental results on the reactive activities of the H2O and transition-metal silicon clusters (Koyasu, K.; Akutsu, M.; Mitsui, M.; Nakajima, A. J. Am. Chem. Soc. 2005, 127, 4998). Generally, the positive charge significantly influences the electronic and geometric structures of the charged clusters. Finally, the most stable neutral and charged TaSi16 clusters are found to be fullerene-like structures and the HOMO-LUMO gap in charged form is detectable experimentally.  相似文献   

19.
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability.  相似文献   

20.
Density functional calculations within the generalized gradient approximation have been used to investigate the lowest energy electronic and geometric structures of neutral, cationic, and anionic Pd(n) (n=1-7) clusters in the gas phase. In this study, we have examined three different spin multiplicities (M=1, 3, and 5) for different possible structural isomers of each neutral cluster. The calculated lowest energy structures of the neutral clusters are found to have multiplicities, M=1 for Pd(1), Pd(3), Pd(5), Pd(6), and Pd(7), while M=3 for Pd(2) and Pd(4). We have also determined the lowest energy states of cationic and anionic Pd(n) (n=1-7) clusters, formed from the most stable neutral clusters, in three spin multiplicities (M=2, 4, and 6). Bond length, coordination number, binding energy, fragmentation energy, bond dissociation energy, ionization potential, electron affinity, chemical hardness, and electric dipole moment of the optimized clusters are compared with experimental and other theoretical results available in the literature. Based on these criteria, we predict the four-atom palladium cluster to be a magic-number cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号