首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this work, we examine the electrocatalytic activity of electrodeposited Platinum (Pt)-Nickel (Ni) alloy layers on an inert substrate electrode for methanol oxidation reaction. Analyses using energy-dispersive fluorescent X-ray analysis and powder X-ray diffractometry confirm alloying of Pt with Ni in a range of compositions. Steady-state polarisation measurements in 0.5 M methanol+0.5 M H2SO4 solutions clearly show that the onset of electro-oxidation shifts to less anodic potential values (approximately 160 mV), while also exhibiting current enhancements up to ~15 times the currents obtained for the pure Pt electrodeposit. A linear relationship between the cyclic voltammetric peak (oxidation) current and [MeOH] is observed at a scan rate of 50 mVs–1, thus indicating reduced influence of adsorbed CO (COads) surface poison. A critical composition, Pt (92%)/Ni (8%) [denoted Pt-Ni(3) alloy] is found to exhibit maximum electrocatalytic activity, beyond which the activity drops, whereas pure Ni does not catalyse the reaction. While the promotion of electro-oxidation is understood to be largely due to the alloy catalyst, surface redox species of Ni oxide formed during the electro-oxidation process may also contribute to the oxygenation of COads, thereby enhancing the oxidation current. Plausible mechanisms of methanol oxidation on Pt/ transition metal alloy electrocatalysts are discussed in terms of electron transfer (in the alloy) and the role of Ni oxide species.  相似文献   

2.
Nanostructured Pt–M (M=Fe, Co, Ni, and Cu) alloy catalysts synthesized by a low temperature (70 °C) reduction procedure with sodium formate in aqueous medium have been investigated for oxygen reduction in sulfuric acid and as cathodes in single proton exchange membrane fuel cells (PEMFC). The Pt–M alloy catalysts show improved catalytic activity towards oxygen reduction compared to pure platinum. Among the various alloy catalysts investigated, the Pt–Co catalyst shows the best performance with the maximum catalytic activity and minimum polarization occurring at a Pt:Co atomic ratio of around 1:7. While mild heat treatments at moderate temperatures (200 °C) improve the catalytic activity due to a cleaning of the surface oxides, annealing at elevated temperatures (900 °C) degrade the activity due to an increase in particle size.  相似文献   

3.
Carbon-supported Pt–Ni alloy nanoparticles with various compositions were prepared by a borohydride reduction method in anhydrous ethanol solvent. Here, we surveyed effect of thermally induced de-alloying on activity of the oxygen reduction reaction (ORR). Especially, changes in surface and bulk structures were investigated through electrochemical and spectroscopic measurements. The activity of as-prepared Pt–Ni alloy nanoparticles showed a monotonous dependence on Pt content. However, heat-treatment induced the phase separation between Pt and NiO and the resultant enhancement in ORR activity without significant increase in surface Pt concentration.  相似文献   

4.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

5.
The competition between pathways that lead to adsorbed CO and CO2 during the electrochemical oxidation of 1.0 M methanol in 0.1 M HClO4 on two bulk Pt–Ru alloys (10 at.% Ru (XRu≈0.1) and 90 at.% Ru (XRu≈0.9)) was investigated for temperatures in the range of 25–80°C. On the high Ru content alloy studied (XRu≈0.9), the dissociative chemisorption of methanol was inhibited below 70°C; the faradaic current for methanol oxidation was low, and only small quantities of adsorbed CO and CO2 were detected with infrared spectroscopy between 0.2–0.8 V (vs. RHE). At 80°C, strong infrared bands from CO2 and adsorbed, atop coordinated CO were observed over the potential ranges of 0.4–0.8 V and 0.2–0.8 V, respectively. The infrared measurements are consistent with the observation that bulk, high Ru content alloy electrodes appear passivated toward methanol oxidation below 70°C. On the low Ru content alloy studied (XRu≈0.1), the methanol surface chemistry was similar to that of pure, polycrystalline Pt, but the electrode was more poison resistant than Pt. For both alloys, the persistence of strong adsorbed CO bands and rapid CO2 production between 0.4–0.8 V suggests CO functions as a reactive species with high steady-state coverages at these potentials.  相似文献   

6.
Silver platinum binary alloys with compositions between about Ag2Pt98 and Ag95Pt5 at < 400 °C have largely not been observed in bulk due to the large immiscibility between these two metals. We present in this paper that Ag–Pt alloy nanostructures can be made in a broad composition range. The formation of Ag–Pt nanostructures is studied by powder X-ray diffraction (PXRD) and energy-dispersive X-ray (EDX). Our results indicate that lattice parameter changes almost linearly with composition in these Ag–Pt nanomaterials. In another word, lattice parameter and composition relationship follows the Vegard's law, which is a strong indication for the formation of metal alloys. Our transmission electron microscopy (TEM) study shows that the silver-rich Ag–Pt alloy nanostructures have spherical shape, while the platinum-rich ones possess wire-like morphology. The stability and crystal phase are investigated by annealing the alloy nanostructures directly or on carbon supports.  相似文献   

7.
The electrocatalytic properties of Pt+Ru alloys supported on graphitized carbon have been studied using oxide-free metal alloys that have been well characterized for phase identification, specific metal surface area, and surface composition. The CO tolerance of the Pt+Ru alloys for the oxidation of CO contaminated hydrogen in hot concentrated H3PO4 increases monotonically with Ru content of the surface and is a direct result of a decreasing coverage of the alloy by adsorbed CO. Furthermore, the strength of bonding of adsorbed CO with the metal surface decreases dramatically with increasing Ru content in the surface. The absolute activity of Pt+Ru alloys for the oxidation of CO contaminated hydrogen is a complex function of temperature and electrode potential. At 160°C, pure Pt is the most active catalyst at all potentials, but at temperatures lower than 120°C the reaction-limiting current for pure Ru exceeds that of pure Pt. At any temperature from 110–160°C or any electrode potential from 0–0.3V (HE), the variation of electrocatalytic activity with alloy composition indicates only dilution of the activity of the more active component.  相似文献   

8.
Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potential range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.  相似文献   

9.
We have demonstrated a new, cost effective synthesis of single-walled carbon nanotube supported Pt–Fe core–shell alloy catalyst (Pt–Fe/SWNT) for the direct methanol fuel cell using galvanic exchange reaction. The Pt–Fe/SWNTs have shown much larger Pt active surface area (150 m2/g-Pt) than the commercial catalyst (54 m2/g-Pt). Furthermore, four-fold enhancement of catalytic activity of the Pt–Fe/SWNTs for oxygen reduction reaction (ORR) has been observed. This catalyst has also demonstrated its tolerance to methanol in ORR.  相似文献   

10.
The electrochemical properties of gold, platinum and gold–platinum alloy electrodes under different heat treatment conditions have been studied in 0.5 M H2SO4 and 0.5 M NaOH. The electro-oxidation of 0.1 M ethylene glycol in 0.5 M NaOH at these electrodes has also been studied. It was found that all the gold–platinum electrodes are more active for ethylene glycol electro-oxidation than both pure gold and platinum, and that the gold–platinum electrodes in the solid solution condition are more active than the two-phase electrodes. Poisoning of all the electrodes occurs during electrolysis of ethylene glycol at a fixed potential. Potential pulsing is successful in removing the poisoning species formed at the pure gold and pure platinum electrodes. High apparent current densities are found during the first few cycles at the Au–Pt alloy electrodes. These high current densities are also associated with more severe poisoning – than at both pure gold and platinum – and longer cleaning cycles are needed to remove the poisons at these electrodes.  相似文献   

11.
It has been demonstrated that Pd2+ ions can be reduced onto Pt surface in the presence of organic materials but only at a very low Cl ion activity. Unlike rhenium deposition, Pd deposition may proceed after the formation of an adsorbed Pd monolayer and bulk deposits are formed on the Pt surface.  相似文献   

12.
An ab initio-based kinetic Monte Carlo algorithm was developed to simulate the direct decomposition of NO over Pt and different PtAu alloy surfaces. The algorithm was used to test the influence of the composition and the specific atomic surface structure of the alloy on the simulated activity and selectivity to form N2. The apparent activation barrier found for the simulation of lean NO decomposition over Pt(100) was 7.4 kcal/mol, which is lower than the experimental value of 11 kcal/mol that was determined over supported Pt nanoparticles. Differences are likely due to differences in the surface structure between the ideal (100) surface and supported Pt particles. The apparent reaction orders for lean NO decomposition over the Pt(100) substrate were calculated to be 0.9 and -0.5 for NO and O2, respectively. Oxygen acts to poison Pt. Simulations on the different Pt-Au(100) surface alloys indicate that the turnover frequency goes through a maximum as the Au composition in the surface is increased, and the maximum occurs near 44% Au. Turnover frequencies, however, are dictated by the actual arrangements of Pt and Au atoms in the surface rather than by their overall composition. Surfaces with similar compositions but different alloy arrangements can lead to very different activities. Surfaces composed of 50% Pt and 50% Au (Pt4 and Au4 surface ensembles) showed very little enhancement in the activity over that which was found over pure Pt. The Pt-Pt bridge sites required for NO adsorption and decomposition were still effectively poisoned by atomic oxygen. The well-dispersed Pt(50%)Au(50%) alloy, on the other hand, increased the TOF over that found for pure Pt by a factor of 2. The most active surface alloy was one in which the Pt was arranged into "+" ensembles surrounded by Au atoms. The overall composition of this surface is Pt(56.2%)Au(43.8%). The unique "+" ensembles maintain Pt bridge sites for NO to adsorb on but limit O2 as well as NO activation by eliminating next-nearest neighbor Pt-bridge sites. The repulsive interactions between two adatoms prevent them from sharing the same metal atoms. The decrease in the oxygen coverage leads to a greater number of vacant sites available for NO adsorption. This increases the NO coupling reaction and hence N2 formation. The inhibition of the rate of N2 formation by O2 is therefore suppressed. The coverage of atomic oxygen decreases from 53% on the Pt(100) surface down to 19% on the "+" ensemble surface. This increases the rate of N2 formation by a factor of 4.3 over that on pure Pt. The reaction kinetics over the "+" ensemble Pt(56.2%)Au(43.8%) surface indicate apparent reaction orders in NO and oxygen of 0.7 and 0.0, respectively. This suggests that oxygen does not poison the PtAu "+" alloy ensemble. The activity and selectivity of the PtAu ensembles significantly decrease for alloys that go beyond 60% Au. Higher coverages of Au shut down sites for NO adsorption and, in addition, weaken the NO and O bond strengths, which subsequently promotes desorption as well as NO oxidation. The computational approach identified herein can be used to more rapidly test different metal compositions and their explicit atomic arrangements for improved catalytic performance. This can be done "in silico" and thus provides a method that may aid high-throughput experimental efforts in the design of new materials. The synthesis and stability of the metal complexes suggested herein still ultimately need to be tested.  相似文献   

13.
Influence of rhodium addition to platinum on the activity of the alloy in methanol electrooxidation has been studied using Pt–Rh/Au limited volume electrodes with various surface compositions including the pure Pt and Rh metals. Electrochemical impedance spectroscopy (EIS) was used in the study. In the case of the Pt–Rh alloy, the impedance picture of methanol oxidation is qualitatively the same as for the pure Pt electrode. However, impedance spectra strongly depend on alloy composition. Equivalent circuits suitable for methanol oxidation on Pt were also used in the case of Pt–Rh and similar fitting results were obtained. A reaction mechanism suggested in the literature for Pt, which involves two strongly adsorbed intermediates competing for the same adsorption sites, is likely also for the Pt–Rh alloys. However, fittings with a corresponding impedance model were unsuccessful for both Pt and Pt–Rh because of mathematical caveats, such that quantitative comparisons were not possible. Nevertheless, EIS results suggest that Rh inhibits the kinetics of formation of reactive oxygen species at the surface of the alloy.  相似文献   

14.
The development of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR) is critical for the large-scale production of fuel cells. Platinum (Pt) nanoparticle catalysts show excellent performance for ORR, though the high cost of Pt is a limiting factor that directly impacts fuel cell production costs. Alloying Pt with other transition metals is an effective strategy to reduce Pt utilization whilst maintaining good ORR performance. In this work, novel hollow PtFe alloy catalysts were successfully synthesized by high-temperature pyrolysis of SiO2-coated Pt-Fe3O4 nanoparticle dimers supported on carbon at 900 °C, followed by SiO2 shell removal and partial dealloying of the PtFe nanoparticles formed using HF. The obtained hollow PtFe nanoparticle catalysts (denoted herein as PtFe-900) showed a 2.3-fold enhancement in ORR mass activity compared to PtFe nanoparticles synthesized without SiO2 protection, and a remarkable 7.8-fold enhancement relative to a commercial Pt/C catalyst. Further, after 10 000 potential cycles, the ORR mass activity of PtFe-900 remained very high (90.9 % of the initial mass activity). The outstanding ORR performance of PtFe-900 can be attributed to the modification of Pt lattice and electronic structure by alloying with Fe at high temperature under the protection of the SiO2 coating. This work guides the development of improved, highly dispersed Pt-based alloy nanoparticle catalysts for ORR and fuel cell applications.  相似文献   

15.
The hierarchical nanoporous (NP) PtFe alloy with multimodal size distributions is straightforwardly fabricated by means of mild de-alloying of the PtFeAl source alloy. This interesting NP structure consists of interconnected larger ligaments around hundreds of nanometers, in which these ligaments are also composed of the three-dimensional network structure with the typical size at 3 nm. In comparison to NP-Pt and Pt/C catalysts, the as-made alloy nanostructure exhibits superior electrocatalytic activity for the methanol oxidation reaction (MOR) with higher catalytic durability and CO tolerance besides the enhanced specific and mass activity. NP-PtFe also shows improved structure stability with the less loss of the electrochemical surface area of Pt upon long-term potential scan in acidic solution. X-ray photoelectron spectroscopy and density functional theory calculations demonstrate that the incorporation of Fe appropriately modified the electron structure of Pt with the downshift of the Pt d-band center, leading to a decreased CO poisoning and an improved MOR activity.  相似文献   

16.
Zusammenfassung Eine Spektrochemische Methode zur Bestimmung von Spuren der Elemente As, Sb, Fe, Mn, Pb, Ni, Bi, Cu, Pt, Pd, Cd, Rh und Ag in reinem Gold wird beschrieben. Zunächst wird das Gold durch Extraktion aus 3 N HCl mit Methylisobutylketon abgetrennt. Die Verunreinigungselemente werden dann an spektralreinem Graphitpulver mit 4% NaCl und 0,02% Co als Bezugselement adsorbiert und im Wechselstromabreißbogen 3,5 min bei 10 A angeregt. Die Spektren wurden mit einem UV-Spektrograph Q 24 auf ORWO-Spektralplatten Blau Extrahart aufgenommen. Die quantitative Bestimmungsgrenze für Mn, Pt und Ag beträgt 10–6%, für Fe, Pb, Ni, Bi, Cu, Pd und Rh 10–5% und für As, Sb und Cd 10–4%. Die relative Standardabweichung überschreitet nicht 30%.
Spectrochemical determination of trace elements in pure gold
A spectrochemical method for the determination of traces of As, Sb, Fe, Mn, Pb, Ni, Bi, Cu, Pt, Pd, Cd, Rh and Ag in pure gold is described. The gold is first separated by extraction into methyl isobutyl ketone from 3 N HCl solution and then the trace elements are adsorbed on spectrally pure carbon powder containing 4% NaCl and 0.02% Co as reference standard, and excited in an 10 A a.c. arc for 3.5 min. Emission spectra were recorded on ORWO-Blau Extrahart plates with an UV-spectrograph Q 24. Limits of detection were 10–6% for Mn, Pt and Ag; 10–5 % for Fe, Pb, Ni, Bi, Cu, Pd and Rh; 10–4% for As, Sb and Cd. Relative standard deviation was not exceeding 30%.
  相似文献   

17.
Summary In addition to the microchemical analytical methods for surface research the field-ion microscope atom-probe allows identification of single atoms and even isotopes desorbed from the surface of metals and alloys, and analysis of the composition of the outermost atomic layers of alloys and the distribution of the components with depth in the crystals, by successive field evaporation. The histograms obtained for thin surface areas of pure molybdenum, the unordered alloys 75 Mo 25 W and 63 Ni 18 Fe 19 Mo, and for the ordered alloy 50 Pt 50 Co, are discussed.
Einzelatom-Analyse von Metallen und Legierungen mit der Feldionenmikroskop-Atomsonde
Zusammenfassung In Ergänzung zu den mikrochemischen Analysenmethoden bietet die Feldionenmikroskop-Atomsonde für Metalle und Legierungen die Möglichkeit der Identifizierung einzelner desorbierter Atome und sogar ihrer Isotope und der Ermittlung der Zusammensetzung in den obersten Atomlagen von Legierungen durch sukzessive Feldverdampfung der Atomlagen nacheinander. Es werden die für dünne Oberflächenschichten für reines Molybdän und die ungeordneten Legierungen 75 Mo 25 W und 63 Ni 18 Fe 19 Mo sowie für die geordnete Legierung 50 Pt 50 Co erhaltenen Histogramme diskutiert.


Presented at the 8th International Microchemical Symposium, Graz, August 25–30, 1980.  相似文献   

18.
The surface properties of PtM (M = Co, Ni, Fe) polycrystalline alloys are studied by utilizing Auger electron spectroscopy, low energy ion scattering spectroscopy, and ultraviolet photoemission spectroscopy. For each alloy initial surface characterization was done in an ultrahigh vacuum (UHV) system, and depending on preparation procedure it was possible to form surfaces with two different compositions. Due to surface segregation thermodynamics, annealed alloy surfaces form the outermost Pt-skin surface layer, which consists only platinum atoms, while the sputtered surfaces have the bulk ratio of alloying components. The measured valence band density of state spectra clearly shows the differences in electronic structures between Pt-skin and sputtered surfaces. Well-defined surfaces were hereafter transferred out from UHV and exposed to the acidic (electro)chemical environment. The electrochemical and post-electrochemical UHV surface characterizations revealed that Pt-skin surfaces are stable during and after immersion to an electrolyte. In contrast all sputtered surfaces formed Pt-skeleton outermost layers due to dissolution of transition metal atoms. Therefore, these three different near-surface compositions (Pt-skin, Pt-skeleton, and pure polycrystalline Pt) all having pure-Pt outermost layers are found to have different electronic structures, which originates from different arrangements of subsurface atoms of the alloying component. Modification in Pt electronic properties alters adsorption/catalytic properties of the corresponding bimetallic alloy. The most active systems for the electrochemical oxygen reduction reaction are established to be the Pt-skin near-surface composition, which also have the most shifted metallic d-band center position versus Fermi level.  相似文献   

19.
Oxygen reduction reaction (ORR) activity and H(2)O(2) formation at Pt(54)Fe(46), Pt(68)Co(32), and Pt(63)Ni(37) electrodes in 0.1 M HClO(4) solution at 20 to 90 degrees C were investigated by using a channel flow double electrode method. In the temperature range of 20-50 degrees C, the apparent rate constants k(app) for ORR at these electrodes were found to be 2.4-4.0 times larger than that at a pure Pt electrode, whereas their apparent activation energies of 41 kJ mol(-1) at -0.525 V vs E degrees (0.760 V vs RHE at 30 degrees C) were comparable to that at the Pt electrode. H(2)O(2) yield was ca. 1.0% at Pt(54)Fe(46) and ca. 0.16% at Pt(68)Co(32) and Pt(63)Ni(37) between 0.3 and 1.0 V vs RHE. The k(app) values at the alloy electrodes decreased with elevating temperature above 60 degrees C, and settled to almost the same values at the Pt electrode. The H(2)O(2) production was not detected at the alloy electrodes once heated at the high temperature in the solution, probably due to the thickening of the Pt skin-layer by a considerable dissolution of nonprecious metal components (Fe, Co, Ni) from the alloys.  相似文献   

20.
Cr–P is a new material of great importance as a decorative coating with nickel in automobile industries. Electroless plating of Cr–P alloy has been carried out using a suitable plating bath solution and working conditions. The deposit is characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray diffraction, X-ray photoelectron spectroscopy and polarization techniques. New phases appear on heat treatment of the coating. The composition (Cr/P) of the coating and the oxidation states of alloying elements vary from the surface to the bulk of the material. The coatings acted as a novel electrode material with good electrocatalytic activity (low overvoltage) and good corrosion resistance for anodic oxidation of methanol in H2SO4 at normal working temperature. The good corrosion resistance of the Cr–P film is accounted for by the existence of a double oxyhydroxide passive film on the surface. The electrocatalytic activity of Cr–P is very high when compared with chromium alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号