首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular structure, ionic mobility and phase transitions in six- and seven-coordinated ammonium oxofluoroniobates (NH4)2NbOF5 and (NH4)3NbOF6 were studied by 19F, 1H NMR and DFT calculations. Equatorial fluorine atoms (Feq) in [NbOF5]2− and [NbOF6]3− are characterized by high 19F NMR chemical shifts while axial fluorine atoms (Fax) have those essentially lower. The high-temperature ionic mobility in (NH4)2NbOF5 does not stimulate the ligand exchange Feq ↔ Fax, whereas it is observed in (NH4)3NbOF6 as pseudorotation typical for seven-coordinated polyhedra. The transformation of pentagonal bipyramidal structure (BP) of [NbOF6]3− into capped trigonal prismatic (CTP) one takes place during the phase transition (PT) at 260 K. The PT of order-disorder type in (NH4)2NbOF5 is accompanied by transition of anionic sublattice to a rigid state. The 19F and 1H NMR data corroborate the independent motions of NH4 groups and anionic polyhedra in (NH4)2NbOF5 while they are coordinated in (NH4)3NbOF6.  相似文献   

2.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16 · 3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2(PO4)4]2 · 2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)33+, Co(NH3)63+, NH4+, Al---O---P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

3.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

4.
The ionic mobility in the temperature interval 180 to 480 K, structure, and electrophysical properties of rubidium-ammonium hexafluorozirconates Rb2−x (NH4) x ZrF6 (1.5 ≤ x ≤ 2.0) are studied by methods of the 19F, 1H NMR spectroscopy, x-ray structure analysis, differential thermal analysis, and impedance spectroscopy. Correlations between the composition of the cationic sublattice, the character of ionic motions, and the phase transition temperature (of the type order-disorder) are established in these compounds. The salient feature of the high-temperature modifications of these fluorozirconates with x ≥ 1.5 is the translation diffusion of ions inside the fluoride and ammonium sublattices and the 19F NMR spectra are characterized by monoaxial anisotropy of the magnetic shielding tensor of the fluorine nuclei. Fluorozirconates with x > 1.5 are shown to belong with the structural type (NH4)2ZrF6. The rubidium cations isomorphically replace the ammonium cations. The electrophysical characteristics of the compounds are examined in the temperature interval 300 to 480 K. It is established that the electroconductivity of these compounds increases with x. Original Russian Text ? V.Ya. Kavun, A.V. Gerasimenko, A.B. Slobodyuk, N.A. Didenko, N.F. Uvarov, V.I. Sergienko, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 5, pp. 563–570. Based on the paper delivered at the 8th Meeting “Fundamental Problems of Solid-State Ionics”, Chernogolovka (Russia), 2006.  相似文献   

5.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

6.
Cerium phosphate nanoparticles with diameters of 10-180 nm were synthesized by a variety of solution techniques. X-ray diffraction (XRD) determined the crystalline phase(s) present in each sample. Population, shift, and spin-lattice relaxation 31P solid-state nuclear magnetic resonance (NMR) measurements accounted for all the 31P nuclei expected in each sample, and were able to distinguish between phosphorous nuclei in different environments and phases. Transmission electron microscopy (TEM) characterized the morphology and crystallinity of the powder samples as well as of the sintered compacts of the powders. In conjunction with TEM, energy-dispersive spectroscopy (EDS) provided a measure of the composition of the bulk intergranular regions within each CePO4 sample. The presence of an amorphous, phosphate-rich intergranular phase was found in those samples prepared by dissolution of ceria in H3PO4 under various conditions.  相似文献   

7.
The reactions of OsO4 with excess of HSC6F5 and P(C6H4X-4)3 in ethanol afford the five-coordinate compounds [Os(SC6F5)4(P(C6H4X-4)3)] where X = OCH3 1a and 1b, CH3 2a and 2b, F 3a and 3b, Cl 4a and 4b or CF3 5a and 5b. Single crystal X-ray diffraction studies of 1 to 5 exhibit a common pattern with an osmium center in a trigonal-bipyramidal coordination arrangement. The axial positions are occupied by mutually trans thiolate and phosphane ligands, while the remaining three equatorial positions are occupied by three thiolate ligands. The three pentafluorophenyl rings of the equatorial ligands are directed upwards, away from the axial phosphane ligand in the arrangement “3-up” (isomers a). On the other hand, 31P{1H} and 19F NMR studies at room temperature reveal the presence of two isomers in solution: The “3-up” isomer (a) with the three C6F5-rings of the equatorial ligands directed towards the axial thiolate ligand, and the “2-up, 1-down” isomer (b) with two C6F5-rings of the equatorial ligands directed towards the axial thiolate and the C6F5-ring of the third equatorial ligand directed towards the axial phosphane. Bidimensional 19F–19F NMR studies encompass the two sub-spectra for the isomers a (“3-up”) and b (“2-up, 1-down”). Variable temperature 19F NMR experiments showed that these isomers are fluxional. Thus, the 19F NMR sub-spectra for the “2-up, 1-down” isomers (b) at room temperature indicate that the two S-C6F5 ligands in the 2-up equatorial positions have restricted rotation about their C–S bonds, but this rotation becomes free as the temperature increases. Room temperature 19F NMR spectra of 3 and 5 also indicate restricted rotation around the Os–P bonds in the “2-up, 1-down” isomers (b). In addition, as the temperature increases, the 19F NMR spectra tend to be consistent with an increased rate of the isomeric exchange. Variable temperature 31P{1H} NMR studies also confirm that, as the temperature is increased, the a and b isomeric exchange becomes fast on the NMR time scale.  相似文献   

8.
9.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

10.
11.
Two solid phase transitions of [Cd(H2O)6](BF4)2 occurring on heating at TC2=183.3 K and TC1=325.3 K, with 2 K and 5 K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance (1H NMR and 19F NMR) relaxation measurements revealed that the phase transitions at TC1 and TC2 were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T1(1H) and T1(19F). These relaxation processes were connected with the “tumbling” motions of the [Cd(H2O)6]2+, reorientational motions of the H2O ligands, and with the iso- and anisotropic reorientation of the BF4 anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the 1H and 19F NMR line measurements revealed that the H2O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H2O in the [Cd(H2O)6]+2, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF4 reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF4 as well as of [Cd(H2O)6]2+ is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H2O did not change much at the TC2 phase transition.  相似文献   

12.
The physical properties and phase transition mechanisms of MCr(SO4)2·12H2O (M=Rb and Cs) single crystals have been investigated. The phase transition temperatures, NMR spectra, and the spin-lattice relaxation times T1 of the 87Rb and 133Cs nuclei in the two crystals were determined using DSC and FT NMR spectroscopy. The resonance lines and relaxation times of the 87Rb and 133Cs nuclei undergo significant changes at the phase transition temperatures. The sudden changes in the splitting of the Rb and Cs resonance lines are attributed to changes in the local symmetry of their sites, and the changes in the temperature dependences of T1 are related to variations in the symmetry of the octahedra of water molecules surrounding Rb+ and Cs+. We also compared these 87Rb and 133Cs NMR results with those obtained for the trivalent cations Cr and Al in MCr(SO4)2·12H2O and MAl(SO4)2·12H2O crystals.  相似文献   

13.
Atomistic simulation methods have been used to study the defect chemistry of the complex perovskite oxide Ba3CaNb2O9. Calculations were carried out for the hexagonal (P-3m1) phase and the cubic (Fm-3m) phase. The hexagonal structure is predicted to be energetically more stable at room temperature. In both structures the most favourable dopant for Nb5+ is found to be Ca2+ rather than Mg2+, in contrast to the generally accepted rule that size similarities govern such processes. The diffusion of oxygen vacancies in the hexagonal and cubic phases occurs within different networks of corner-sharing NbO6 and CaO6 octahedra. Irrespective of the arrangement of octahedra, however, migration of oxygen vacancies around NbO6 octahedra takes place with lower activation energies than around the CaO6 octahedra.  相似文献   

14.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

15.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

16.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

17.
The ternary BaO-TiO2-B2O3 glasses containing a large amount of TiO2 (20-40 mol%) are prepared, and their optical basicities (Λ), the formation, structural features and second-order optical nonlinearities of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are examined to develop new nonlinear optical materials. It is found that the glasses with high TiO2 contents of 30-40 mol% show large optical basicities of Λ=0.81-0.87, suggesting the high polarizabity of TiOn polyhedra (n=4-6) in the glasses. BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are found to be formed as main crystalline phases in the glasses. It is found that BaTi(BO3)2 crystals tend to orient at the surface of crystallized glasses. The new XRD pattern for the Ba3Ti3O6(BO3)2 phase is proposed through Rietvelt analysis. The second harmonic intensities of crystallized glasses were found to be 0.8 times as large as α-quartz powders, i.e., I2ω(sample)/I2ω(α-quartz)=0.8, for the sample with BaTi(BO3)2 crystals and to be I2ω(sample)/I2ω(α-quartz)=68 for the sample with Ba3Ti3O6(BO3)2 crystals. The Raman scattering spectra for these two crystalline phases are measured for the first time and their structural features are discussed.  相似文献   

18.
Based on powder X-ray diffraction and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) investigations of mixed phosphate Al0.5Ga0.5PO4, prepared by co-precipitation method followed by annealing at 900 °C for 24 h, it is shown that Al0.5Ga0.5PO4 phase crystallizes in hexagonal form with lattice parameter a=0.491(2) and c=1.106(4) nm. This hexagonal phase of Al0.5Ga0.5PO4 is similar to that of pure GaPO4. The 31P MAS NMR spectrum of the mixed phosphate sample consists of five peaks with systematic variation of their chemical shift values and is arising due to existence of P structural units having varying number of the Al3+/Ga3+ cations as the next nearest neighbors in the solid solution. Based on the intensity analysis of the component NMR spectra of Al0.5Ga0.5PO4, it is inferred that the distribution of Al3+ and Ga3+ cations is non-random for the hexagonal Al0.5Ga0.5PO4 sample although XRD patterns showed a well-defined solid solution formation.  相似文献   

19.
Synthesis and crystal structure of a new structure type of mixed Cr(III)/Cr(VI) chromates is reported. NH4Cr(CrO4)2 was prepared from CrO3 in the presence of (NH4)2Ce(NO3)6. Since this is the first preparation of mixed valence ternary chromium oxides from aqueous solution, a reaction pathway for this synthesis is suggested. The crystal structure of NH4Cr(CrO4)2 has been determined from three-dimensional X-ray data collected at low temperature, 173 K. The structure belongs to the orthorhombic space group Pnma, with a=14.5206(10), b=5.4826(4), and Z=4. The title compound consists of corner-sharing chromium(III) octahedra and chromium(VI) tetrahedra forming a three-dimensional network with the composition [Cr(CrO4)2]nn-, containing channels in which zigzag rows of ammonium ions balance the net charge.  相似文献   

20.
Two separate samples of Na3C60 were prepared by direct reaction of C60 with sodium metal vapor, and subjected to different annealing times of 10 days and 16 days. Solid-state 13C and 23Na NMR, along with elemental analysis, powder X-ray diffraction (XRD) and Raman spectroscopy, were used to characterize both samples. The Raman spectra of both materials have a single peak at 1447 cm−1 which correspond to the Ag peak of C603−, consistent with the stoichiometry of NaxC60 with x=3. The powder XRD patterns are also virtually identical for both samples. However, solid-state 23Na and 13C NMR spectra of the two samples are significantly different, suggesting a relationship between annealing times and the final structure of the alkali fulleride. Variable-temperature 23Na magic-angle spinning (MAS) NMR experiments reveal the existence of two or three distinct sodium species and reversible temperature-dependent diffusion of sodium ions between octahedral and tetrahedral interstitial sites. 13C MAS NMR experiments are used to identify resonances corresponding to free C60 and fulleride species, implying that the samples are segregated-phase materials composed of C60 and non-stoichiometric Na3C60. Variable-temperature 13C MAS NMR experiments reveal temperature-dependent motion of the fullerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号