首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The crystallization behavior after partial or complete melting of the α phase of iPP is examined by combined differential scanning calorimetry (DSC) and optical microscopy: calorimetric results are directly correlated with corresponding morphologies of microtome sections of DSC samples. On partial melting at various temperatures (hereafter referred to as Ts) located in a narrow range (4°C) below and near Tm, the number of nuclei increases (as in classical self-nucleation experiments), by several orders of magnitude; on subsequent cooling, the crystallization peak is shifted by up to 25°C. After partial melting in the lower part of the Ts range and recrystallization, the polymers display a prominent morphology “memory effect” whereby a phantom pattern of the initial spherulite morphology is maintained. After partial melting in the upper part of the Ts range the initial morphology is erased and self-nucleation affects only the total number of nuclei. The present experimental procedures make it possible to define, under “standard” conditions, the crystallization range of the polymer and in particular, the maximum crystallization temperature achievable when “ideally” nucleated. © John Wiley & Sons, Inc.  相似文献   

2.
Cabin air filters consisting of activated carbon infiltrated with nanoscopic metal oxide particles as catalysts have been investigated for the reduction of nitrogen oxides within motor-car cabins. In that concept, nitrogen dioxide is adsorbed on the activated carbon during operation conditions of the car and then reduced by the catalysts within the pores. The conversion has to take place at ambient temperature during the relatively long standstill periods of motor-cars. In this article we are going to discuss the manufacturing of the adsorbents by “liquid phase infiltration” and their characterization by techniques, such as nitrogen sorption analysis, X-ray diffraction, thermogravimetry, energy dispersive X-ray spectroscopy, and electron microscopy. The new adsorbents were evaluated in repeated breakthrough tests using NO2 (4 ppmV as feed concentration) in humid air as the adsorptive. In the intermittent rest periods of varying duration the volume flow through the fixed bed of adsorbent was stopped. The measured breakthrough curves indicate a catalytic conversion of the nitrogen dioxide in the filter beds.  相似文献   

3.
The study of the nonisothermal crystallization behavior of layered silicates micro‐ and nano‐biocomposites based on poly(butylene adipate‐co‐terephthalate) (PBAT), a biodegradable copolyester, has been carried out with different theoretical models. They were applied and developed with the aim to describe and better understand the influence of the layered silicates dispersion on crystallization. The nucleation efficiency of the layered silicates has been demonstrated with the use of the “Modified Avrami model,” thanks to the higher crystallization rate parameter, Zc, and of the lower crystallization half‐time, t1/2, compared to the neat matrix. The crystallization activation energies, Ea, calculated from “Kissinger's model” have shown that layered silicates have a negative effect on the crystallite growth process. Thus, these analyses have shown that layered silicates have a double effect on the crystallization process. These two opposites' phenomena depend on the dispersion quality and are more pronounced for the intercalated nano‐biocomposites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1503–1510, 2007  相似文献   

4.
The mutation sites of the four mutants F35Y, P40V, V45E and V45Y of cytochrome b5 are located at the edge of the heme-binding pocket. The solvent accessible areas of the “pocket inte-rior“ of the four mutants and the wild-type cytochrome b5 have been calculated based on their crystal structures at high resolu-tion. The change in the hydrophobicity of the heme-binding pocket resulting from the mutation can be quantitatively de-scribed using the difference of the solvent accessible area of the “pocket interior“ of each mutant from that of the wild-type cy-tochrome b5. The influences of the hydrophobicity of the heme-binding pocket on the protein stability and redox potential are discussed.  相似文献   

5.
We observed the formation of aerosol particles in CS2 vapour irradiated by 337 nm nitrogen laser light. Various interesting features of the kinetics of the formation process are reported. The chemical nature of the photoreaction products giving rise to the formation of aerosol particles is also discussed.  相似文献   

6.
Andrew J. Yee  Minami Yoda 《Electrophoresis》2021,42(21-22):2215-2222
On the basis of previous studies, the particles in a dilute (volume fractions φ < 4 × 10–3) suspension in combined Poiseuille and electroosmotic “counterflow” at flow Reynolds numbers Re ≤ 1 accumulate, then assemble into structures called “bands,” within ∼6 μm of the channel wall. The experimental studies presented here use a small fraction of tracer particles labeled with a different fluorophore from the majority “bulk” particles to visualize the dynamics of individual particles in a φ = 1.7 × 10–3 suspension. The results at two different near-wall shear rates and three electric field magnitudes E show that the near-wall particles are concentrated about 150-fold when the bands start to form, and are then concentrated about 200-fold to a maximum near-wall volume fraction of ∼0.34. The growth in the near-wall particles during this accumulation stage appears to be exponential. This near-wall particle accumulation is presumably driven by a wall-normal “lift” force. The observations of how the particles accumulate near the wall are compared with recent analyses that predict that suspended particles subject to shear flow and a dc electric field at small particle Reynolds numbers experience such a lift force. A simple model that assumes that the particles are subject to this lift force and Stokes drag suggests that the force driving particles toward the wall, of O(10–17 N), is consistent with the time scales for particle accumulation observed in the experiments.  相似文献   

7.
Enzyme-catalyzed preparation of polymers offers several potentially valuable advantages over the usual polymerization procedures. (1) Such polymerizations may allow the polymer to retain functionality that would be destroyed under normal polymerization conditions. (2) The selectivity provided by enzyme catalysts may permit polymers, including optically active polymers, to be prepared that are either not accessible or accessible only with difficulty by other methods. (3) The characteristics of the enzyme and the mild polymerization conditions may permit formation of polymers having highly regular sizes and backbone structures. This report describes the first successful use of an enzyme-catalyzed polycondensation to prepare a chiral (AA–BB)x polyesters of more than a few repeat units. Polymerization of bis(2,2,2-trichloroethyl) alkanedioates (BB) with diols (AA) using the enzyme porcine pancreatic lipase (PPL) as a catalyst is detailed. The polycondensations were carried out at ambient temperature in anhydrous, low polarity organic solvents such as ether, THF, and methylene chloride. End group analysis by NMR provided Mn values of 1300–8200 daltons while GPC provided Mw values of 2800–14900 daltons for the polymers. Based on proton NMR spectra obtained during the polymerization, relatively rapid formation of an AA–BB “dimer” and an AA–BB–AA “trimer,” slower formation of a BB–AA–BB “trimer,” and subsequent condensation of these to give higher polymers are suggested to be components of the polymerization mechanism.  相似文献   

8.
Synthesis of small‐molecule Cu2O2 adducts has provided insight into the related biological systems and their reactivity patterns including the interconversion of the CuII2(μ‐η22‐peroxo) and CuIII2(μ‐oxo)2 isomers. In this study, absorption spectroscopy, kinetics, and resonance Raman data show that the oxygenated product of [(BQPA)CuI]+ initially yields an “end‐on peroxo” species, that subsequently converts to the thermodynamically more stable “bis‐μ‐oxo” isomer (Keq=3.2 at ?90 °C). Calibration of density functional theory calculations to these experimental data suggest that the electrophilic reactivity previously ascribed to end‐on peroxo species is in fact a result of an accessible bis‐μ‐oxo isomer, an electrophilic Cu2O2 isomer in contrast to the nucleophilic reactivity of binuclear CuII end‐on peroxo species. This study is the first report of the interconversion of an end‐on peroxo to bis‐μ‐oxo species in transition metal‐dioxygen chemistry.  相似文献   

9.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well‐defined nitrogen‐doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear‐complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X‐ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   

10.
Nitrogen inversion and rotation around the N-O single bond in N, N-dialkoxyalkylamine systems are discussed in terms of a semi-empirical MO method which is essentially based on the concepts discussed by Mulliken in connection with the “magic formula”. By taking a simplified structural model and adjusting one empirical parameter, a satisfying agreement with experimental results is obtained. The results allow a chemically transparent interpretation and confirm, to a more quantitative extent, the previously discussed concepts [1]. The (spxp) promotion of the nitrogen lone pair strongly inhibits the inversion process and dominates the simultanous lowering of the σ-bond energies due to (i) the gain of s-character in the σ-involved nitrogen hybrid-AO's and (ii) the increased σ-bond overlaps. This dominance is considerably enhanced when electronegative ligands are attached to nitrogen. The total repulsion energy turns out to favour strongly the planar transition state and is essentially determined by the repulsions between the lone pair and the σ-bonds at nitrogen. Factorization into several repulsive contributions reveals that among these only one inhibits the inversion process, namely the repulsions between the nitrogen lone pair and the bonded and non-bonded electron pairs on the ligands. For the process of rotation around the N-O single bond a potential curve is obtained with two energy minima. The repulsion energy analysis shows that the shape of the potential curve is governed by the repulsions between the lone pairs on oxygen and nitrogen as well as the formally more or less “lone pair-like” σNC-bond. This situation is compared to the more general one in which essentially two lone pairs or formally more or less “lone pair-like” σ-bonds, on each of two adjacent centers, repel each other by conjugative destabilization; a situation which is realized for instance in molecules that show the anomeric effect.  相似文献   

11.
Oxidation of alicyclic unsaturated hydrocarbons (4-vinylcyclohexene, 5-vinylnorbornene, 5-cyclohexenylnorbornene, and 5-vinylbicyclooctene) with 30% hydrogen peroxide solutions and percarbamide is studied. Reaction was carried out at 40–70°C in the presence of heterogenized peroxocomplex compounds of molybdenum and tungsten formed “in situ” in the reaction of metal oxohalides with H3PO4, nano-dimensional particles of carbon material, and hydrogen peroxide. Main oxidation products of alicyclic diene hydro-carbons are the corresponding unsaturated epoxides and diols. Depending on the reaction condition their ratio varies in a wide range.  相似文献   

12.
Electrochemical nitrogen reduction reaction (eNRR) is promising in place of the Haber–Bosch process for artificial N2 fixation. However, the high activity and selectivity of eNRR are challenging to achieve simultaneously due to the scaling relations. Such “leverage” between activity and selectivity has severely restricted eNRR. To overcome this bottleneck, the complementary design of electronic structures in multicomponent electrocatalysts has been recently pursued, aiming to maximize the advantages of each component and optimize the multistep reactions, which has stood at the cutting edge in this aspect. Here, we present a minireview of the design, performance, and mechanism of multicomponent electrocatalysts with complementary electronic structures. We particularly emphasize the interactions between N2 and elements from d-, p-, and s-blocks, which are essential for understanding how these electrocatalysts are beyond the “leverage” between activity and selectivity.  相似文献   

13.
《中国化学快报》2020,31(5):1119-1123
Mesoporous semiconducting metal oxides(SMOs) heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction between high crystallinity and high surface area,the synthesis of mesoporous SMOs heterojunctions with highly o rdered mesostructures,highly crystallized frameworks,and high surface area remains a huge challenge.In this work,we develop a novel "acid-base pair"adjusted solvent evaporation induced self-assembly(EISA) strategy to prepare highly crystallized ordered mesoporous TiO_2/WO_3(OM-TiO_2/WO_3) heterojunctions.The WCl_6 and titanium isopropoxide(TIPO) are used as the precursors,respectively,which function as the "acid-base pair",enabling the coassembly with the structure directing agent(PEO-b-PS) into highly ordered meso structures.In addition,PEO-b-PS can be converted to rigid carbon which can protect the meso structures from collapse during the crystallization process.The resultant OM-TiO_2/WO_3 heterojunctions possess primitive cubic mesostructures,large pore size(~21.1 nm),highly crystalline frameworks and surface area(~98 m~2/g).As a sensor for acetone,the obtained OM-TiO_2/WO_3 show excellent re sponse/recovery perfo rmance(3 s/5 s),good linear dependence,repeatability,selectivity,and long-term stability(35 days).  相似文献   

14.
The formation of active particles and their changes in the course of 1,3-butadiene decomposition on a Ni/Al2O3catalyst at temperatures from 400 to 800°C were studied by high-resolution electron microscopy. It was found that carbon filaments of different types were formed at 400–800°C. The growth of thin filaments (20–30 nm in diameter) takes place at 400–600°C on a conical Ni particle located at the growing end of the filament, whereas di-symmetrical filaments 50–100 nm in diameter grow on biconical metal particles. As the carbonization temperature was increased to 700–800°C, graphite nanotubes 5–20 nm in diameter were formed. It was found that the mechanism of formation and the structure of filaments are related to the state of catalytically active species, which consist of a solid solution of carbon in the metal. It is suggested that the metastable surface nickel carbide Ni3C1 – x is an intermediate compound in the catalytic formation of graphite filaments from 1,3-butadiene. Upon termination of the reaction, the metastable Ni3C1 – x microphase is decomposed with the formation of hexagonal nickel microinclusions. The role of epitaxy in the nucleation and growth of a graphite phase on the metal is discussed. Models are presented for the growth of structurally different carbon filaments depending on the formation of active metal species at various temperatures. Considerable changes in the structure of carbon and the formation of nanotubes at 700–800°C are related to the appearance of a viscous-flow state of metal–carbon particles.  相似文献   

15.
Several transition metal complexes that can absorb nitrogen from the gas phase are now known. Some of the N2-metal complexes are stable enough to be isolated and their structure elucidated, the N2 molecule remaining chemically inert. In other cases reduction to N3? is possible, but the structure of the reactive intermediate N2-metal complex can be approached only by mechanistic studies. In the stable complexes the nitrogen is bound via a lone pair of electrons in the direction of the molecular axis (“end-on”), in the reducible complexes possibly “edge-on”.  相似文献   

16.
The enhanced phytochrome pelletability that results from in vivo irradiation of Avena shoots may be divided into two operationally defined sequential stages: the in vivo development of a “potential to pellet” and the “expression” of this potential in vitro. Kinetic studies confirm previous findings that the generation of this “potential to pellet” is a very rapid (complete in < 10 s, 25°C), genuinely intracellular process, itself photoreversibly induced by Pfr. In addition, it is shown that the sustained development of the “potential to pellet”, that proceeds in the dark at 0°C following a red pulse, requires Pfr continually in the cell over the entire development period. Far red light immediately terminates further development of the red-induced “potential” at any point during the development phase. No immediate reduction is observed, however, in that level of “potential pelletability” already attained at the time of the far red pulse. This indicates that the level of “potential pelletability” established in vivo is insensitive to the form of the pigment at extraction regardless of the level reached. “Expression” of the “potential to pellet” refers to the actual detection in homogenates of an enhanced physical association of phytochrome with pelletable material. Maximum “expression” requires the presence of a divalent cation in the medium during homogenization. Rapid posthomogenization addition of Mg2+ to Mg2+-free extracts sustains enhanced pelletability but with rapidly declining effectiveness over the fmt 1–2 min after extraction. The rate of decline is faster if the phytochrome is present as Pfr than as Pr in the homogenate. Neither these nor previous data permit a distinction to be made between (a) preservation by the cation of a pre-existing intracellular interaction, and (b) a Mg2+-mediated induction of an artifactual, in vitro association predetermined in the cell by a genuine phyto-chrome-controlled process. Various formalistic models are discussed in the context of these and other data.  相似文献   

17.
Jun Zhu 《化学:亚洲杂志》2019,14(9):1413-1417
Molecular nitrogen (N2) is abundant in the atmosphere and, found in many biomolecules, an essential element of life. The Haber–Bosch process, developed over 100 years ago, requires relatively harsh conditions to activate N2 on the iron surface and generate ammonia for use as fertilizer or to produce other chemicals, leading to consumption of more than 2 % of the world's annual energy supply. Thus, developing “green” approaches for N2 activation under mild conditions is particularly important and urgent. Here we demonstrate that a metal‐free N2 activation could be favorable both thermodynamically and kinetically (with an activation energy as low as 9.1 kcal mol?1) by using a carbon‐boron formal frustrated Lewis pair, which is supported by high‐level coupled cluster calculations. Mechanistic studies reveal that aromaticity plays a crucial role in stabilizing both the transition state and the product. Our findings highlight the importance of a combination of an N‐heterocyclic carbene with a methyleneborane unit in metal‐free N2 activation, providing conceptual guidance for experimental realization.  相似文献   

18.
It has been proven qualitatively by a number of authors using variable temperature NMR experiments that most metal carbonyl complexes are nonrigid. A quantitative determination of the ligand exchange frequency ve is often achieved by a line shape analysis or by measurement of the transverse relaxation time T2 using the Carr-Purcell method. In the case of a “very fast” exchange, however, both methods prove unsuccessful. It is shown in this study that a simultaneous fit of IR or Raman spectra on the one hand and NMR spectra on the other can make possible the determination of ve for the “very fast” exchange and can also facilitate the determination of ve in “slow” and “medium” exchange cases considerably. The ligand exchange frequency thus found for Fe(CO)5, 1.1 × 1010s?1, is unexpectedly high; comparison with variable temperature measurements on solid Fe(CO)5, yields similar energy barriers. A mechanism of exchange closely related to the “Berry mechanism” is proposed. Finally the consequences of this surprisingly large ligand exchange rate are discussed with respect to IR band assignments for molecular “fragments” M(CO)x (where x=coordination number, and M is a transition metal, typically lanthanoid or actinoid).  相似文献   

19.
The lamellar growth kinetics and lamellar thickness of poly(ethylene terephthalate) crystallized from the glassy state have been determined as a function of crystallization temperature. Values of end and side surface free energies have been estimated as well as the residual lamellar thickness. Analyses carried out using secondary nucleation approaches indicate that the width of a critical nucleus is comparable to the effective substrate length for multiple nucleation in this and other slowly crystallizing polymers at high supercoolings. A “universal” critical value of T/T2ΔT below which the strip completion process ceases was found to exist. All crystallization must, therefore, occur through the deposition of critical nuclei. Models are proposed for this process which appear to be consistent with both neutron scattering and infrared experiments on quenched polyethylenes. Comparison of crystallization rates, expressed as “jump” rates, with relaxation frequencies suggest that in order for crystallization to occur at any given temperature the relaxation frequency must be at least two decades faster than the crystal “jump” rate.  相似文献   

20.
The self‐diffusion coefficients of each component in mixtures of 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][N(SO2CF3)2]) and acetonitrile were determined. The results suggest that the hydrodynamic boundary conditions change from “stick” to “slip” as the solvent composition transitions from “ionic liquid dissolved in acetonitrile” (χIL<0.4) to “acetonitrile dissolved in ionic liquid” (χIL>0.4). At higher χIL, the acetonitrile species are affected by “cage” and “jump” events, as the acetonitrile molecules reside nearer to the charged centre on the ions than in the “non‐polar” regions. The self‐diffusion coefficients of hexan‐1‐amine, dipropylamine, 1‐hexanol and dipropylether in mixtures of [Bmim][N(SO2CF3)2] and acetonitrile were determined. In general, the nitrogen‐containing solutes were found to diffuse slower than the oxygen‐containing solutes; this indicates that there are greater ionic liquid–N interactions than ionic liquid–O interactions. This work demonstrates that the self‐diffusion coefficients of species can provide valuable information about solvent–solvent and solvent–solute interactions in mixtures containing an ionic liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号