首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylations of ethene, propene, and butene by methanol over the acidic microporous H-ZSM-5 catalyst are studied by means of state of the art computational techniques, to derive Arrhenius plots and rate constants from first principles that can directly be compared with the experimental data. For these key elementary reactions in the methanol to hydrocarbons (MTH) process, direct kinetic data became available only recently [J. Catal.2005, 224, 115-123; J. Catal.2005, 234, 385-400]. At 350 °C, apparent activation energies of 103, 69, and 45 kJ/mol and rate constants of 2.6 × 10(-4), 4.5 × 10(-3), and 1.3 × 10(-2) mol/(g h mbar) for ethene, propene, and butene were derived, giving following relative ratios for methylation k(ethene)/k(propene)/k(butene) = 1:17:50. In this work, rate constants including pre-exponential factors are calculated which give very good agreement with the experimental data: apparent activation energies of 94, 62, and 37 kJ/mol for ethene, propene, and butene are found, and relative ratios of methylation k(ethene)/k(propene)/k(butene) = 1:23:763. The entropies of gas phase alkenes are underestimated in the harmonic oscillator approximation due to the occurrence of internal rotations. These low vibrational modes were substituted by manually constructed partition functions. Overall, the absolute reaction rates can be calculated with near chemical accuracy, and qualitative trends are very well reproduced. In addition, the proposed scheme is computationally very efficient and constitutes significant progress in kinetic modeling of reactions in heterogeneous catalysis.  相似文献   

2.
The cation–anion and cation–solvent interactions in solutions of the protic ionic liquid (PIL) [Et3NH][I] dissolved in solvents of different polarities are studied by means of far infrared vibrational (FIR) spectroscopy and density functional theory (DFT) calculations. The dissociation of contact ion pairs (CIPs) and the resulting formation of solvent‐separated ion pairs (SIPs) can be observed and analyzed as a function of solvent concentration, solvent polarity, and temperature. In apolar environments, the CIPs dominate for all solvent concentrations and temperatures. At high concentrations of polar solvents, SIPs are favored over CIPs. For these PIL/solvent mixtures, CIPs are reformed by increasing the temperature due to the reduced polarity of the solvent. Overall, this approach provides equilibrium constants, free energies, enthalpies, and entropies for ion‐pair formation in trialkylammonium‐containing PILs. These results have important implications for the understanding of solvation chemistry and the reactivity of ionic liquids.  相似文献   

3.
用数值方案,在RHF/3-21G分子轨道从头算法的水平上,得到了氟化异氰FNC到氟化氰FCN重排反应的反应途径(内禀反应坐标IRC).沿着IRC;讨论了反应过程中体系几何构型的变化,计算了沿IRC运动与垂直于IRC简正振动之间的耦合常数(BK,F),各振动模式对应的频率(ωK),使用统一的半经典徽扰和无限级突然(SCP-IOS)近似理论计算了在一定能量下产物的振动分配.结果表明,在过渡态后,耦合常数(BK,F)的大小强烈地影响产物的振动态分布,另外用传统过渡态、变分过渡态理论及相关的隧道效应校正计算了该反应的速率常数.  相似文献   

4.
A general and practical procedure is described for calculating rate constants for chemical reactions using a minimal number of ab initio calculations and quantum-dynamical computations. The method exploits a smooth interpolating functional developed in the hyperspherical representation. This functional is built from two Morse functions and depends on a relatively small number of parameters with respect to conventional functionals developed to date. Thus only a small number of ab initio points needs to be computed. The method is applied to the H + CH4 --> H2 + CH3 reaction. The quantum scattering calculations are performed treating explicitly the bonds being broken and formed. All the degrees of freedom except the breaking and forming bonds are optimized ab initio and harmonic vibrational frequencies and zero-point energies for them are calculated at the MP2(full) level with a cc-pVTZ basis set. Single point energies are calculated at a higher level of theory with the same basis set, namely CCSD(T, full). We report state-to-state cross sections and thermal rate constants for the title reaction and make comparisons with previous results. The calculated rate constants are in good agreement with experiments.  相似文献   

5.
The catalysis of peptide bond formation between two glycine molecules on H‐FAU zeolite was computationally studied by the M08‐HX density functional. Two reaction pathways, the concerted and the stepwise mechanism, starting from three differently adsorbed reactants, amino‐bound, carboxyl‐bound, and hydroxyl‐bound, are studied. Adsorption energies, activation energies, and reaction energies, as well as the corresponding intrinsic rate constants were calculated. A comparison of the computed energetics of the various reaction paths for glycine indicates that the catalyzed reaction proceeds preferentially via the concerted reaction mechanism of the hydroxyl‐bound configuration. This involves an eight‐membered ring of the transition structure instead of the four‐membered ring of the others. The step from the amino‐bound configuration to glycylglycine is the rate‐determining step of the concerted mechanism. It has an estimated activation energy of 51.2 kcal mol?1. Although the catalytic reaction can also occur via the stepwise reaction mechanism, this path is not favored.  相似文献   

6.
In this contribution we discuss computational aspects of a recently introduced method for the calculation of proton tunneling rate constants, and tunneling splittings, which has been applied to molecules and complexes, and should apply equally well to bulk materials. The method is based on instanton theory, adapted so as to permit a direct link to the output of quantum‐chemical codes. It is implemented in the DOIT (dynamics of instanton tunneling) code, which calculates temperature‐dependent tunneling rate constants and mode‐specific tunneling splittings. As input, it uses the structure, energy, and vibrational force field of the stationary configurations along the reaction coordinate, computed by conventional quantum‐chemical programs. The method avoids the difficult problem of calculating the exact least‐action trajectory, known as the instanton path, and instead focusses on the corresponding instanton action, because it governs the dynamic properties. To approximate this action for a multidimensional system, the program starts from the one‐dimensional instanton action along the reaction coordinate, which can be obtained without difficulty. It then applies correction terms for the coupling to the other vibrational degrees of freedom, which are treated as harmonic oscillators (transverse normal modes). The couplings are assumed linear in these modes. Depending on the frequency and the character of the transverse modes, they may either decrease or increase the action, i.e., help or hinder the transfer. A number of tests have shown that the program is at least as accurate as alternative programs based on transition‐state theory with tunneling corrections, and is also much less demanding in computer time, thus allowing application to much larger systems. An outline of the instanton formalism is presented, some new developments are introduced, and special attention is paid to the connection with quantum‐chemical codes. Possible sources of error are investigated. To show the program in action, calculations are presented of tunneling rates and splittings associated with triple proton transfer in the chiral water trimer. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 787–801, 2001  相似文献   

7.
The electronic structures with spin‐orbit effects of the zirconium nitride ZrN molecule are investigated by the methods of multireference single and double configuration interaction. The potential energy curves are calculated along with the spectroscopic constants for the lowest‐lying 34 spin‐orbit states Ω in ZrN. A good agreement is displayed by comparing the calculated spectroscopic constants with those available experimentally. The permanent dipole moments are calculated along with the vibrational energies. New results are obtained in this work for 29 spin‐orbit states and their spectroscopic constants calculated. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Using Transition-State Theory, experimental rate constants, determined over a range of temperatures, for reactions of Vitamin E type antioxidants are analysed in terms of their enthalpies and entropies of activation. It is further shown that computational methods may be employed to calculate enthalpies and entropies, and hence Gibbs free energies, for the overall reactions. Within the linear free energy relationship (LFER) assumption, that the Gibbs free energy of activation is proportional to the overall Gibbs free energy change for the reaction, it is possible to rationalise, and even to predict, the relative contributions of enthalpy and entropy for reactions of interest, involving potential antioxidants. A method is devised, involving a competitive reaction between *CH3 radicals and both the spin-trap PBN and the antioxidant, which enables the relatively rapid determination of a relative ordering of activities for a series of potential antioxidant compounds, and also of their rate constants for scavenging *CH3 radicals (relative to the rate constant for addition of *CH3 to PBN).  相似文献   

9.
在第Ⅰ报中,我们建立了可逆反应动力学的数学模型,提出了可逆反应热动力学的对比进度研究法.为了进一步验证和完善该数学模型及对比进度法,在前文基础上研究了2-硝基丙烷与吗啡啉的反应,测定了该反应在25.0℃及30.0℃时的正逆速率常数和平衡常数.并对热动力学对比进度法及实验结果进行了讨论.  相似文献   

10.
Multireference single‐ and double‐excitation configuration interaction (MRD‐CI) calculations of transition energies for the Hg atom and spectroscopic constants for the HgH molecule are carried out with the generalized relativistic effective core potential (GRECP) method. A new selection criterium for the reference configurations is discussed. The calculated spectroscopic constants are compared with experimental data and results of calculations of other groups. Improvement of accuracy is mainly observed for bond lengths from the GRECP/MRD‐CI calculations (without applying the T = 0 correction) with respect to the results of other groups. Analysis of the quality of the approximations employed is carried out. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

11.
Multiple mechanisms of backbiting and β‐scission reactions in free‐radical polymerization of methyl acrylate are modeled using different levels of theory, and the rigid‐rotor harmonic‐oscillator (RRHO) and hindered‐rotor (HR) approximations. We identify the most cost‐effective computational method(s) for studying the reactions and assess the effects of different factors (e.g., functional type and chain length) on thermodynamic quantities, and then identify the most likely mechanisms with first‐principles thermodynamic calculations and simulations of nuclear magnetic resonance (NMR) spectra. To this end, the composite method G4(MP2)‐6X is used to calculate the energy barrier of a representative backbiting reaction. This calculated barrier is then compared with values obtained using density functional theory (DFT) (B3LYP, M06‐2X, and PBE0) and a wavefunction‐based quantum chemistry method (MP2) to establish the benchmark method. Our study reveals that the barriers predicted using B3LYP, M06‐2X, and G4(MP2)‐6X are comparable. The entropies calculated using the RRHO and HR approximations are also comparable. DFT calculations indicate that the 1:5 backbiting mechanism with a six‐membered ring transition state and 1:7 backbiting with an eight‐membered ring transition state are energetically more favored than 1:3 backbiting and 1:9 backbiting mechanisms. The thermodynamic favorability of 1:5 versus 1:7 backbiting depends on the live polymer chain length. The activation energies and rate constants of the left and right β‐scission reactions are nearly equal. The calculated and experimental 13C and 1H NMR chemical shifts of polymer chains affected by backbiting and β‐scission reactions agree with each other, which provides further evidence in favor of the proposed mechanisms. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
ANTA的结构、性质及其互变异构的理论研究   总被引:1,自引:0,他引:1  
对3-硝基-5-氨基-1,2,4-三唑(ANTA)的三种异构体,1H-ANTA(Ⅰ),2-ANTA(Ⅱ)和4H-ANTA(Ⅲ)在,bainitio-HF/3-21G和DFT-B3LYP/3-21G势能面计算的基础上,进行6-311G^**几何参数全优化,MP2总能量和SCRF溶剂(四氢呋喃)效应计算。以振动分析和统计热力学为基础,作标题物热力学性质以及Ⅰ和Ⅱ之间的互变异构反应计算,求得分子几何,电子结构和300~1000K范围的焓、熵和热容以及Ⅰ和Ⅱ互变异构平衡常数和速率常数。发现在三种异构体中在通常温度下以Ⅱ在气相下最稳定,Ⅰ在溶液中最稳定。低温下难以发生异构化反应,温度可提高Ⅰ与Ⅱ之间的互变速率,在800K时两种异构体在气相中等量共存;大于800K时Ⅰ更为稳定。  相似文献   

13.
A recently developed method for calculating anharmonic vibrational energy levels at nonstationary points along a reaction path that is based on second-order perturbation theory in curvilinear coordinates is combined with variational transition state theory with semiclassical multidimensional tunneling approximations to calculate thermal rate constants for the title reaction. Two different potential energy surfaces were employed for these calculations, an improved version of the author's surface 5 and the WSLFH surface of Wu et al. [J. Chem. Phys. 113, 3150 (2000)]. We present detailed comparisons of rate constants computed for the two surfaces with and without anharmonicity and with various approximations for incorporating tunneling along the reaction path. The results for this system are quite sensitive to the surface employed, the choice of coordinates (curvilinear versus rectilinear), and the inclusion of anharmonicity. A comparison with experiment provides information on the accuracy of these surfaces.  相似文献   

14.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

15.
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction CH3CHF2+Cl. One transition state is located for α‐H abstraction, and two are identified for β‐H abstraction. The potential‐energy surface (PES) is obtained at the G3(MP2)//MP2/6‐311G(d, p) level. Furthermore, the rate constants of the three channels are evaluated by using canonical variational transition‐state theory (CVT) with small‐curvature tunneling (SCT) contributions over a wide temperature range of 200–2500 K. The dynamic calculations show that the reaction proceeds mainly by α‐H abstraction over the whole temperature range. The calculated rate constants and branching ratios are both in good agreement with the available experimental values.  相似文献   

16.
A new potential energy surface for the gas-phase F(2P)+CH4 reaction and its deuterated analogues is reported, and its kinetics and dynamics are studied exhaustively. This semiempirical surface is completely symmetric with respect to the permutation of the four methane hydrogen atoms, and it is calibrated to reproduce the topology of the reaction and the experimental thermal rate constants. For the kinetics, the thermal rate constants were calculated using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 180-500 K. The theoretical results reproduce the experimental variation with temperature. The influence of the tunneling factor is negligible, due to the flattening of the surface in the entrance valley, and we found a direct dependence on temperature, and therefore positive and small activation energies, in agreement with experiment. Two sets of kinetic isotope effects were calculated, and they show good agreement with the sparse experimental data. The coupling between the reaction coordinate and the vibrational modes shows qualitatively that the FH stretching and the CH3 umbrella bending modes in the products appear vibrationally excited. The dynamics study was performed using quasi-classical trajectory calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found that the FH(nu',j') rovibrational distributions agree with experiment. Second, the excitation function presents an oscillatory pattern, reminiscent of a reactive resonance. Third, the state specific scattering distributions present reasonable agreement with experiment, and as the FH(nu') vibrational state increases the scattering angle becomes more forward. These kinetics and dynamics results seem to indicate that a single, adiabatic potential energy surface is adequate to describe this reaction, and the reasonable agreement with experiment (always qualitative and sometimes quantitative) lends confidence to the new surface.  相似文献   

17.
Poly(3‐hydroxybutyrate) (PHB) is produced by numerous bacteria as carbon and energy reserve storage material. Whereas nature only produces PHB in its strictly isotactic (R) form, homogeneous catalysis, when starting from racemic (rac) β‐butyrolactone (BL) as monomer, can in fact produce a wide variety of tacticities. The variation of the metal center and the surrounding ligand structure enable activity as well as tacticity tuning. However, no homogeneous catalyst exists to date that is easy to modify, highly active, and able to produce PHB with high isotacticities from rac‐β‐BL. Therefore, in this work, the reaction kinetics of various 2‐methoxyethylamino‐bis(phenolate) lanthanide (Ln=Sm, Tb, Y, Lu) catalysts are examined in detail. The order in monomer and catalyst are determined to elucidate the reaction mechanism and the results are correlated with DFT calculations of the catalytic cycle. Furthermore, the enthalpies and entropies of the rate‐determining steps are determined through temperature‐dependent in situ IR measurements. Experimental and computational results converge in one specific mechanism for the ring‐opening polymerization of BL and even allow us to rationalize the preference for syndiotactic PHB.  相似文献   

18.
We have performed high‐level electronic structure computations on the most important species of the CHnP systems n = 1–3 to characterize them and provide reliable information about the equilibrium and vibrationally averaged molecular structures, rotational constants, vibrational frequencies (harmonic and anharmonic), formation enthalpies, and vertical excitation energies. Those chemical systems are intermediates for several important reactions and also prototypical phosphorus‐carbon compounds; however, they are often elusive to experimental detection. The present results significantly complement their knowledge and can be used as an assessment of the experimental information when available. The explicitly correlated coupled‐cluster RCCSD(T)‐F12 method has been used for geometry optimizations and vibrational frequency calculations. Vibrational configuration interaction theory has been used to account for anharmonicity effects. Basis‐set limit extrapolations have been carried out to determine accurate thermochemical quantities. Electronic excited states have been calculated with coupled‐cluster approaches and also by means of the multireference configuration interaction method. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Vibrational corrections to the Verdet constants of nine molecules (H2, N2, CO, H2O, CH4, benzene, toluene, p-xylene, and o-xylene) were calculated with pure density functional theory (DFT), hybrid DFT, and an approximate coupled-cluster theory. Comparisons are made for the accuracy of the vibrational averages among different methods and with respect to experimental data where available. It is found that vibrational corrections to magneto-optical rotation can be as large as 10% of the equilibrium value. Hybrid DFT with the B3LYP hybrid functional offers reasonable accuracy at a relatively inexpensive computational cost for accurate calculations of vibrationally averaged Verdet constants.  相似文献   

20.
The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号