首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three ligands, 2-(3-(carboxymethyl)-1,10-phenanthroline-[5,6-d]imidazole-1-yl)acetate (CPIA), 2-(benzo[d][1,3]dioxol-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BIP), and 2-(9H-carbazol-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (CIP), and their complexes, [Co(phen)2(CPIA)]3+ (1) (phen = 1,10-phenanthroline), [Co(phen)2(BIP)]3+ (2), and [Co(phen)2(CIP)]3+ (3), have been synthesized and characterized. Binding of the three complexes with calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods, cyclic voltammetry, and viscosity measurements. The three complexes bind to DNA through an intercalative mode, and the size and shape of the intercalative ligands have significant effects on the binding affinity of complexes to CT-DNA.  相似文献   

2.
Two new complexes, [Ru(phen)2(ppd)]2+ ( 1 ) and [Ru(phen)(ppd)2]2+ ( 2 ) (ppd=pteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, phen=1,10‐phenanthroline) were synthesized and characterized by ES‐MS, 1H‐NMR spectroscopy, and elemental analysis. The intercalative DNA‐binding properties of 1 and 2 were investigated by absorption‐spectroscopy titration, luminescence‐spectroscopy studies, thermal denaturation, and viscosity measurements. The theoretical aspects were further discussed by comparative studies of 1 and 2 by means of DFT calculations and molecular‐orbital theory. Photoactivated cleavage of pBR322 DNA by the two complexes were also studied, and 2 was found to be a much better photocleavage reagent than 1 . The mechanism studies revealed that singlet oxygen and the excited‐states redox potentials of the complex may play an important role in the DNA photocleavage.  相似文献   

3.
New ligand 2-(4′-biphenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP) and its complexes [Ru(bpy)2(BPIP)]2+ (1) (bpy = 2,2′-bipyridine) and [Ru(phen)2(BPIP)]2+ (2) (phen = 1,10-phenanthroline) have been synthesized and characterized by mass spectroscopy, 1H NMR and cyclic voltammetry. The interaction of two Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by spectroscopic and viscosity measurements. Results indicate that both complexes bind to DNA via an intercalative mode and the DNA-binding affinity of complex 2 is much greater than that of complex 1. Furthermore, when irradiated at 365 nm, both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA.  相似文献   

4.
A series of ruthenium(II) complexes with electron-donor or electron-acceptor groups in intercalative ligands, [Ru(phen)2(o-MOP)]2+ (1), [Ru(phen)2(o-MP)]2+ (2), [Ru(phen)2(o-CP)]2+ (3) and [Ru(phen)2(o-NP)]2+ (4), have been synthesized and characterized by elementary analysis, ES-MS, 1H NMR, electronic absorption and emission spectra. The binding properties of these complexes to CT-DNA have been investigated by spectroscopy and viscosity experiments. The results showed that these complexes bind to DNA in intercalation mode and their intrinsic binding constants (Kb) are 1.1, 0.35, 0.53 and 1.7 × 105 M−1, respectively. The subtle but detectable differences occurred in the DNA-binding properties of these complexes are mainly ascribed to the electron-withdrawing abilities of substituents (–OCH3 < –CH3 < –Cl < –NO2) on the intercalative ligands as well as the intramolecular H-bond (for substituent –OCH3) which increase the planarity area of the intercalative ligand to some extent. The density functional theory (DFT) calculations were also performed and used to further discuss the trend in the DNA-binding affinities of these complexes.  相似文献   

5.
Two bisupporting Keggin-type polyoxoanion-based hybrids decorated by [Zn(phen)2]2+ complexes, [Zn(phen)2]2(PW 11 VI WVO40) (1) and K[Zn(phen)2(H2O)]2(OH) (SiW12O40)·H2O (2) (phen = 1,10′-phenanthroline), have been hydrothermally synthesized, and characterized by elemental analysis, IR spectra, UV–Vis spectrum, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, and single-crystal X-ray diffraction. The structural analyses reveal that compound 1 consists of a 0D bisupporting Keggin-type heteropoly blue cluster obtained by using reductant glucose, which is grafted by two [Zn(phen)2]2+ fragments; compound 2 presents a 1D infinite chain, which is constructed from bisupporting [SiW12O40]4? polyoxoanions decorated by [Zn(phen)2(H2O)]2+ fragments and K+ ions. Additionally, the electrochemical behaviors of two compounds were studied.  相似文献   

6.
Two new Ru(II) complexes, [Ru(bpy)2(pmip)]2+ (1) and [Ru(phen)2(pmip)]2+ (2), have been synthesized and characterized by elemental analysis, ESI-MS and 1H NMR spectra. Their DNA-binding properties were studied by means of UV–VIS, emission and CD spectra, thermal denaturation and viscosity measurements as well as their DNA-photocleavage properties. The experimental results show that both 1 and 2 can bind to DNA in an intercalative mode; the DNA-binding affinity of 2 is greater than that of 1, which suggests that the ancillary ligands have a significant effect on the spectroscopic properties and DNA-binding behavior of the Ru(II) complexes. Under irradiation with UV light, the Ru(II) complexes show excellent efficiency of cleaving DNA. This research may provide valuable insight into the interactions of metal complexes with DNA, knowledge that is an excellent backdrop for the rational design of promising drugs.  相似文献   

7.
《Solid State Sciences》2004,6(7):689-696
Two interesting neutral tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2·xH2O (phen=1,10-phenanthroline, EtOH=ethanol, M=Co, x=7, 1; M=Ni, x=6, 2) were hydrothermally prepared and structurally characterized. The mixed molybdenum–vanadium polyoxoanion [MoVI7MoVVIV8O40(PO4)]4− exist in both two complexes, which acts as a bridge to covalently link two pairs of transition metal complex fragments, generating neutral windmill-like trimetallic nanocluster polyoxometalates. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 reveal that antiferromagnetic exchange interaction exists in this type of trimetallic tetrasupporting heteropolyoxometalates.  相似文献   

8.
A new polypyridyl ligand tbtc (tbtc=4,5,9,14-tetraaza-benzo[b]triphenylene-11-carboxylic acid methyl ester) and its complexes [Ru(phen)2(tbtc)]2+ (1) (phen=1,10-phenanthroline) and [Ru(2,9-dmp)2(tbtc)]2+ (2) (2,9-dmp=2,9-dimethyl-1,10-phenanthroline) were synthesized and characterized by element analysis, MS, and 1H NMR. The DNA binding properties of both complexes to calf thymus DNA (CT-DNA) were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode, and the DNA binding affinity of complex 1 is much greater than that of complex 2. This difference in binding affinity probably was caused by the different ancillary ligands. Also, when irradiated at 365 nm, complex 1 was found to be a more-effective DNA-cleaving agent than complex 2.  相似文献   

9.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

10.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

11.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(bpy)2(dpta)]3+ and [Co(bpy)2(amtp)]3+ (bpy = 2,2′-bipyridine, dpta = dipyrido-[3,2-a;2′,3′-c]-thien-[3,4-c]azine, amtp = 3-amino-1,2,4-triazino[5,6-f]-1,10-phenanthroline) have been synthesized and characterized. The interaction of CoIII complexes with calf thymus DNA was investigated by spectroscopic and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, CoIII complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The mechanism studies reveal that hydroxyl radical (OH) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(bpy)2(dpta)]3+ and superoxide anion radical (O 2 •− ) acts as the key role in the cleavage reaction of plasmid DNA by [Co(bpy)2(amtp)]3+.  相似文献   

12.
Telomerase inhibition is an attractive strategy for cancer chemotherapy. In the current study, we have synthesized and characterized two chiral ruthenium(II) complexes, namely, Λ‐[Ru(phen)2(p‐MOPIP)]2+ and Δ‐[Ru(phen)2(p‐MOPIP)]2+, where phen is 1,10‐phenanthroline and p‐MOPIP is 2‐(4‐methoxyphenyl)‐imidazo[4,5f][1,10]phenanthroline. The chiral selectivity of the compounds and their ability to discriminate quadruplex DNA were investigated by using UV/Vis, fluorescence spectroscopy, circular dichroism spectroscopy, fluorescence resonance energy transfer melting assay, polymerase chain reaction stop assay and telomerase repeat amplification protocol. The results indicate that the two chiral compounds could induce and stabilize the formation of antiparallel G‐quadruplexes of telomeric DNA in the presence or absence of metal cations. We report the remarkable ability of the two complexes Λ‐[Ru(phen)2(p‐MOPIP)]2+ and Δ‐[Ru(phen)2(p‐MOPIP)]2+ to stabilize selectively G‐quadruplex DNA; the former is a better G‐quadruplex binder than the latter. The anticancer activities of these complexes were evaluated by using the MTT assay. Interestingly, the antiproliferative activity of Λ‐[Ru(phen)2(p‐MOPIP)]2+ was higher than that of Δ‐[Ru(phen)2(p‐MOPIP)]2+, and Λ‐[Ru(phen)2(p‐MOPIP)]2+ showed a significant antitumor activity in HepG2 cells. The status of the nuclei in Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+‐treated HepG2 cells was investigated by using real‐time living cell microscopy to determine the effects of Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+ on intracellular accumulation. The results show that Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+ can be taken up by HepG2 cells and can enter into the cytoplasm as well as accumulate in the nuclei; this suggests that the nuclei were the cellular targets of Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+.  相似文献   

13.
Copper (II) complexes [Cu(dmit)(phen)]2 (1) and [Cu(mnt)(phen)] n (2) (mnt2??=?maleonitriledithiolate, dmit2??=?1,3-dithiole-2-thione-4,5-dithiolate, phen?=?1,10-phenanthroline) have been prepared by ligand-exchange between phen and [N(Bu)4]2[Cu(dmit)2] or [N(Bu)4]2[Cu(mnt)2]. Both complexes have been characterized by spectroscopic, electrochemical, and single-crystal X-ray analysis. In complex 1, dimers are extended into a two-dimensional array by weak S5–Cu contacts. In complex 2, monomers are extended into chains in a head-to-tail arrangement by weak Cu–S coordination bonds and ππ stacking interactions.  相似文献   

14.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
New carboxylate platinum(II) complexes: syn and anti isomers of Pt(phen)(OOCMe)2 molecular complex, [Pt(phen)(NCMe)2](O3SCF3)2, as well as unusual sandwich complex [Pt(phen)2]2+ · 2syn-[Pt(phen)(OOCMe)2] where [Pt(phen)2]2+ cation is inserted between two syn-Pt(phen)(OOCMe)2 molecules were synthesized and structurally characterized by X-ray diffraction analysis. As distinct from syn- and anti-Pt(phen)(OOCMe)2 and [Pt(phen)(NCMe)2](O3SCF3)2 complexes with flat phenanthroline ligand, the phen ligands in [Pt(phen)2]2+ cation have a curved configuration. Comparative DFT analysis of geometry of model structures phen, phen+, phenH+, and [Ptphen2] n+ (n = 1, 2) showed that electron removal from phen molecule had no effect on its geometry in both free state and platinum(II) complexes.  相似文献   

16.
[Cu( phen )2]2+ ( phen =1,10-phenanthroline) is the first and still one of the most efficient artificial nucleases. In general, when the phen ligand is modified, the nucleolytic activity of its CuII complex is significantly reduced. This is most likely due to higher steric bulk of such ligands and thus lower affinity to DNA. CuII complexes with phen ligands having fluorinated substituents (F, CF3, SF5, SCF3) surprisingly showed excellent DNA cleavage activity—in contrast to the unsubstituted [Cu( phen )2]2+—in the absence of the otherwise required classical, bioabundant external reducing agents like thiols or ascorbate. This nucleolytic activity correlates well with the half-wave potentials E1/2 of the complexes. Cancer cell studies show cytotoxic effects of all complexes with fluorinated ligands in the low μm range, whereas they were less toxic towards healthy cells (fibroblasts).  相似文献   

17.
Based on the ligand dppz (dppz = dipyrido-[3,2-a:2′,3′-c]phenazine), a new ligand pbtp (pbtp = 4,5,9,11,14-pentaaza-benzo[b]triphenylene) and its polypyridyl ruthenium(II) complexes [Ru(phen)2(pbtp)]2+ (1) (phen = 1,10-phenanthroline and [Ru(bpy)2(pbtp)]2+ (2) (bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR spectroscopy. The DNA-binding of these complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that both complexes 1 and 2 bind to CT-DNA in classical intercalation mode, and can enantioselectively interact with CT-DNA. It is interesting to note that the pbtp ruthenium(II) complexes, in contrast to the analogous dppz complexes, do not show fluorescent behavior when intercalated into DNA. When irradiated at 365 nm, both complexes promote the photocleavage of pBR 322 DNA.  相似文献   

18.
4-Methyl-2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline) (MHPIP) and its complexes [Co(bpy)2MHPIP]3+ (1) (bpy = 2,2′-bipyridine), [Co(dmb)2MHPIP]3+ (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine), and [Co(phen)2MHPIP]3+ (3) (phen = 1,10-phenanthroline) have been synthesized and characterized by UV/VIS, IR, EA, 1H, 13C-NMR, and mass spectra. The binding of the three complexes with calf-thymus-DNA (CT-DNA) has been investigated by absorption and emission spectroscopy, DNA-melting techniques, viscosity measurements, and DNA cleavage assay. The spectroscopic data and viscosity results indicate that these complexes bind to CT-DNA via an intercalative mode. The complexes also promote photocleavage of plasmid pBR322 DNA and were screened for antimicrobial activity.  相似文献   

19.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

20.
Four asymmetric cobalt(III) complexes, [Co(bpy)2(aip)]3+, [Co(bpy)2(pyip)]3+, [Co(phen)2(aip)]3+, and [Co(phen)2(pyip)]3+ (bpy = 2,2,bipyridine, phen = 1,10-phenathroline), (pyip = 2-(1-pyrenyl)-1H-imidazo[4,5-f][phen], (aip = 2-(9-anthryl)-1H-imidazo[4,5,-f][phen], have been synthesized and characterized. Their interaction with calf thymus DNA (CT-DNA) was investigated by physico-chemical methods and photocleavage. The size and shape of the ligands have a marked effect on the DNA-binding affinity of the complexes. Irradiation of pBR322 DNA with these novel cobalt(III) complexes results in nicking of the plasmid DNA. Toxicity and induced cell death investigations revealed that the complexes of pyip had higher toxicity than those of aip. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号