首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. Phytochemicals have been used as antiviral agents against several viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.  相似文献   

2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new virus in the coronavirus family that causes coronavirus disease (COVID-19), emerges as a big threat to the human race. To date, there is no medicine and vaccine available for COVID-19 treatment. While the development of medicines and vaccines are essentially and urgently required, what is also extremely important is the repurposing of smart materials to design effective systems for combating COVID-19. Graphene and graphene-related materials (GRMs) exhibit extraordinary physicochemical, electrical, optical, antiviral, antimicrobial, and other fascinating properties that warrant them as potential candidates for designing and development of high-performance components and devices required for COVID-19 pandemic and other futuristic calamities. In this article, we discuss the potential of graphene and GRMs for healthcare applications and how they may contribute to fighting against COVID-19.  相似文献   

3.
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.  相似文献   

4.
A newly diagnosed coronavirus in 2019 (COVID-19) has affected all human activities since its discovery. Flavonoids commonly found in the human diet have attracted a lot of attention due to their remarkable biological activities. This paper provides a comprehensive review of the benefits of flavonoids in COVID-19 disease. Previously-reported effects of flavonoids on five RNA viruses with similar clinical manifestations and/or pharmacological treatments, including influenza, human immunodeficiency virus (HIV), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, were considered. Flavonoids act via direct antiviral properties, where they inhibit different stages of the virus infective cycle and indirect effects when they modulate host responses to viral infection and subsequent complications. Flavonoids have shown antiviral activity via inhibition of viral protease, RNA polymerase, and mRNA, virus replication, and infectivity. The compounds were also effective for the regulation of interferons, pro-inflammatory cytokines, and sub-cellular inflammatory pathways such as nuclear factor-κB and Jun N-terminal kinases. Baicalin, quercetin and its derivatives, hesperidin, and catechins are the most studied flavonoids in this regard. In conclusion, dietary flavonoids are promising treatment options against COVID-19 infection; however, future investigations are recommended to assess the antiviral properties of these compounds on this disease.  相似文献   

5.
Novel coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which can be transmitted from person to person. As of September 21, 2021, over 228 million cases were diagnosed as COVID-19 infection in more than 200 countries and regions worldwide. The death toll is more than 4.69 million and the mortality rate has reached about 2.05% as it has gradually become a global plague, and the numbers are growing. Therefore, it is important to gain a deeper understanding of the genome and protein characteristics, clinical diagnostics, pathogenic mechanisms, and the development of antiviral drugs and vaccines against the novel coronavirus to deal with the COVID-19 pandemic. The traditional biology technologies are limited for COVID-19-related studies to understand the pandemic happening. Bioinformatics is the application of computational methods and analytical tools in the field of biological research which has obvious advantages in predicting the structure, product, function, and evolution of unknown genes and proteins, and in screening drugs and vaccines from a large amount of sequence information. Here, we comprehensively summarized several of the most important methods and applications relating to COVID-19 based on currently available reports of bioinformatics technologies, focusing on future research for overcoming the virus pandemic. Based on the next-generation sequencing (NGS) and third-generation sequencing (TGS) technology, not only virus can be detected, but also high quality SARS-CoV-2 genome could be obtained quickly. The emergence of data of genome sequences, variants, haplotypes of SARS-CoV-2 help us to understand genome and protein structure, variant calling, mutation, and other biological characteristics. After sequencing alignment and phylogenetic analysis, the bat may be the natural host of the novel coronavirus. Single-cell RNA sequencing provide abundant resource for discovering the mechanism of immune response induced by COVID-19. As an entry receptor, angiotensin-converting enzyme 2 (ACE2) can be used as a potential drug target to treat COVID-19. Molecular dynamics simulation, molecular docking and artificial intelligence (AI) technology of bioinformatics methods based on drug databases for SARS-CoV-2 can accelerate the development of drugs. Meanwhile, computational approaches are helpful to identify suitable vaccines to prevent COVID-19 infection through reverse vaccinology, Immunoinformatics and structural vaccinology.  相似文献   

6.
The novel coronavirus disease 2019 (COVID-19) pandemic has enabled scientists around the world to work on the areas such as prevention of virus spread, virus inactivation, and vaccine preparation. Based on the development of nanotechnology, the emergence of some nanomaterials provides some excellent solutions to overcome the virus pandemic: by spraying nano-coating, the masks and protective clothing in medical institutions can be self-sterilized; by adding nano-adjuvants, vaccines can produce stronger responses to antigen of lower doses; by wrapping with nanocarriers, drugs can escape the monitoring of the immune system so as to obtain better antiviral effects. The unique chemical properties of some nanomaterials indicate the broad prospects in future applications. In conclusion, nanomaterials will play an important role in combating COVID-19 and the future anti-viral pandemics.  相似文献   

7.
Despite the virulence and high fatality of coronavirus disease 2019 (COVID-19), no specific antiviral treatment exists until the current moment. Natural agents with immune-promoting potentials such as bee products are being explored as possible treatments. Bee honey and propolis are rich in bioactive compounds that express strong antimicrobial, bactericidal, antiviral, anti-inflammatory, immunomodulatory, and antioxidant activities. This review examined the literature for the anti-COVID-19 effects of bee honey and propolis, with the aim of optimizing the use of these handy products as prophylactic or adjuvant treatments for people infected with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Molecular simulations show that flavonoids in propolis and honey (e.g., rutin, naringin, caffeic acid phenyl ester, luteolin, and artepillin C) may inhibit viral spike fusion in host cells, viral-host interactions that trigger the cytokine storm, and viral replication. Similar to the potent antiviral drug remdesivir, rutin, propolis ethanolic extract, and propolis liposomes inhibited non-structural proteins of SARS-CoV-2 in vitro, and these compounds along with naringin inhibited SARS-CoV-2 infection in Vero E6 cells. Propolis extracts delivered by nanocarriers exhibit better antiviral effects against SARS-CoV-2 than ethanolic extracts. In line, hospitalized COVID-19 patients receiving green Brazilian propolis or a combination of honey and Nigella sativa exhibited earlier viral clearance, symptom recovery, discharge from the hospital as well as less mortality than counterparts receiving standard care alone. Thus, the use of bee products as an adjuvant treatment for COVID-19 may produce beneficial effects. Implications for treatment outcomes and issues to be considered in future studies are discussed.  相似文献   

8.
Since the emergence of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) first reported in Wuhan, China in December 2019, COVID-19 has spread to all the continents at an unprecedented pace. This pandemic has caused not only hundreds of thousands of mortalities but also a huge economic setback throughout the world. Therefore, the scientific communities around the world have focused on finding antiviral therapeutic agents to either fight or halt the spread of SARS-CoV-2. Since certain medicinal plants and herbal formulae have proved to be effective in treatment of similar viral infections such as those caused by SARS and Ebola, scientists have paid more attention to natural products for effective treatment of this devastating pandemic. This review summarizes studies and ethnobotanical information on plants and their constituents used for treatment of infections caused by viruses related to the coronavirus family. Herein, we provide a critical analysis of previous reports and how to exploit published data for the discovery of novel therapeutic leads to fight against COVID-19.  相似文献   

9.
《中国化学快报》2021,32(10):3019-3022
The wide-spreading SARS-CoV-2 virus has put the world into boiling water for more than a year, however pharmacological therapies to act effectively against coronavirus disease 2019 (COVID-19) remain elusive. Chloroquine (CQ), an antimalarial drug, was found to exhibit promising antiviral activity in vitro and in vivo at a high dosage, thus CQ was approved by the FDA for the emergency use authorization (EUA) in the fight against COVID-19 in the US, but later was revoked the EUA status due to the severe clinical toxicity. Herein, we show that supramolecular formulation of CQ by a macrocyclic host, curcurbit[7]uril (CB[7]), reduced its non-specific toxicity and improved its antiviral activity against coronavirus, working in synergy with CB[7]. CB[7] was found to form 1:1 host-guest complexes with CQ, with a binding constant of ∼104 L/mol. The CQ-CB[7] formulation decreased the cytotoxicity of CQ against Vero E6 and L-02 cell lines. In particular, the cytotoxicity of CQ (60 μmol/L) against both Vero E6 cell line and L-02 cell lines was completely inhibited in the presence of 300 μmol/L and 600 μmol/L CB[7], respectively. Furthermore, the CB[7] alone showed astonishing antiviral activity in SARS-CoV-2 infected Vero E6 cells and mouse hepatitis virus strain A59 (MHV-A59) infected N2A cells, and synergistically improved the antiviral activity of CQ-CB[7], suggesting that CB[7]-based CQ formulation has a great potential as a safe and effective antiviral agent against SARS-CoV-2 and other coronavirus.  相似文献   

10.
Antiviral drug is a powerful weapon for humans to defeat the virus. The spread of 2019 novel coronavirus pneumonia (COVID-19) outbreak has a serious impact on the world. At the same time, it also makes people aware of the importance of antiviral drug development. This article reviews the application of the phosphoramidate prodrug strategy and the application of ProTide technology in the development of antiviral drugs. The synthesis methods of nucleoside-phosphoramidate prodrugs are introduced. The application of nucleoside-phosphoramidate in different antiviral drugs is also summarized. This review can provide a reference for the development of new antiviral drugs in the future.  相似文献   

11.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.  相似文献   

12.
The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) gained tremendous attention due to its high infectivity and pathogenicity. The 3-chymotrypsin-like hydrolase protease(Mpro) of SARS-CoV-2 has been proven to be an important target for anti-SARS-CoV-2 activity. To better identify the drugs with potential in treating coronavirus disease 2019(COVID-19) caused by SARS-CoV-2 and according to the crystal structure of Mpro, we conducted a virtual screening of FDA-approved drugs and chemical agents that have entered clinical trials. As a result, 9 drug candidates with therapeutic potential for the treatment of COVID-19 and with good docking scores were identified to target SARS-CoV-2. Consequently, molecular dynamics(MD) simulation was performed to explore the dynamic interactions between the predicted drugs and Mpro. The binding mode during MD simulation showed that hydrogen bonding and hydrophobic interactions played an important role in the binding processes. Based on the binding free energy calculated by using MM/PBSA, Lopiravir, an inhibitor of human immunodeficiency virus(HIV) protease, is under investigation for the treatment of COVID-19 in combination with ritionavir, and it might inhibit Mpro effectively. Moreover, Ombitasvir, an inhibitor for non-structural protein 5 A of hepatitis C virus(HCV), has good inhibitory potency for Mpro. It is notable that the GS-6620 has a binding free energy, with respect to binding Mpro, comparable to that of ombitasvir. Our study suggests that ombitasvir and lopinavir are good drug candidates for the treatment of COVID-19, and that GS-6620 has good anti-SARS-CoV-2 activity.  相似文献   

13.
Low levels of micronutrients have been associated with adverse clinical outcomes during viral infections. Therefore, to maximize the nutritional defense against infections, a daily allowance of vitamins and trace elements for malnourished patients at risk of or diagnosed with coronavirus disease 2019 (COVID-19) may be beneficial. Recent studies on COVID-19 patients have shown that vitamin D and selenium deficiencies are evident in patients with acute respiratory tract infections. Vitamin D improves the physical barrier against viruses and stimulates the production of antimicrobial peptides. It may prevent cytokine storms by decreasing the production of inflammatory cytokines. Selenium enhances the function of cytotoxic effector cells. Furthermore, selenium is important for maintaining T cell maturation and functions, as well as for T cell-dependent antibody production. Vitamin C is considered an antiviral agent as it increases immunity. Administration of vitamin C increased the survival rate of COVID-19 patients by attenuating excessive activation of the immune response. Vitamin C increases antiviral cytokines and free radical formation, decreasing viral yield. It also attenuates excessive inflammatory responses and hyperactivation of immune cells. In this mini-review, the roles of vitamin C, vitamin D, and selenium in the immune system are discussed in relation to COVID-19.  相似文献   

14.
Coronavirus disease 2019 (COVID-19), the current pandemic disease, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Type I and III interferons (IFNs) are innate cytokines that are important in the first-line defense against viruses. Similar to many other viruses, SARS-CoV-2 has evolved mechanisms for evading the antiviral effects of type I and III IFNs at multiple levels, including the induction of IFN expression and cellular responses to IFNs. In this review, we describe the innate sensing mechanisms of SARS-CoV-2 and the mechanisms used by SARS-CoV-2 to evade type I and III IFN responses. We also discuss contradictory reports regarding impaired and robust type I IFN responses in patients with severe COVID-19. Finally, we discuss how delayed but exaggerated type I IFN responses can exacerbate inflammation and contribute to the severe progression of COVID-19.Subject terms: Infectious diseases, Infection  相似文献   

15.
16.
The high rate of spreading of COVID-19 is attributed to airborne particles exhaled by infected but often asymptomatic individuals. In this review, the role of aerosols in SARS-CoV-2 coronavirus transmission is discussed from the biophysical perspective. The essential properties of the coronavirus virus transported inside aerosol droplets, their successive inhalation, and size-dependent deposition in the respiratory system are highlighted. The importance of face covers (respirators and masks) in the reduction of aerosol spreading is analyzed. Finally, the discussion of the physicochemical phenomena of the coronavirus entering the surface of lung liquids (bronchial mucus and pulmonary surfactant) is presented with a focus on a possible role of interfacial phenomena in pulmonary alveoli. Information given in this review should be important in understanding the essential biophysical conditions of COVID-19 infection via aerosol route as a prerequisite for effective strategies of respiratory tract protection, and possibly, indications for future treatments of the disease.  相似文献   

17.
In 2020, the world tried to combat the corona virus (COVID-19) pandemic. A proven treatment method specific to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still not found. In this study, seven new antiviral compounds were designed for COVID-19 treatment. The ability of these compounds to inhibit COVID-19’s RNA processing was calculated by the molecular docking study. It has been observed that the compounds can have high binding affinities especially against NSP12 (between -9.06 and -8.00 kcal/mol). The molecular dynamics simulation of NSP12-ZG 7 complex proved the stability of interaction. The synthesis of two most active molecules was performed by one-pot reaction and characterized by FT-IR, 1H-NMR, 13C-NMR, and mass spectroscopy. The compounds presented with their synthesis are inhibitory core structures against SARS-CoV-2 infection.  相似文献   

18.
Nanoparticles are small particles sized 1–100 nm, which have a large surface-to-volume ratio, allowing efficient adsorption of drugs, proteins, and other chemical compounds. Consequently, functionalized nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, biopolymers, and lipids. In this review, we focus on recent work targeting the severe acute respiratory syndrome coronavirus 2 virus that causes coronavirus disease (COVID-19). Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor angiotensin-converting enzyme 2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.  相似文献   

19.
Oligophenylene ethynylenes, known as OPEs, are a sequence of aromatic rings linked by triple bonds, the properties of which can be modulated by varying the length of the rigid main chain or/and the nature and position of the substituents on the aromatic units. They are luminescent molecules with high quantum yields and can be designed to enter a cell and act as antimicrobial and antiviral compounds, as biocompatible fluorescent probes directed towards target organelles in living cells, as labelling agents, as selective sensors for the detection of fibrillar and prefibrillar amyloid in the proteic field and in a fluorescence turn-on system for the detection of saccharides, as photosensitizers in photodynamic therapy (due to their capacity to highly induce toxicity after light activation), and as drug delivery systems. The antibacterial properties of OPEs have been the most studied against very popular and resistant pathogens, and in this paper the achievements of these studies are reviewed, together with almost all the other roles held by such oligomers. In the recent decade, their antifungal and antiviral effects have attracted the attention of researchers who believe OPEs to be possible biocides of the future. The review describes, for instance, the preliminary results obtained with OPEs against severe acute respiratory syndrome coronavirus 2, the virus responsible for the COVID-19 pandemic.  相似文献   

20.
目前由新型冠状病毒(SARS-CoV-2)引发的新冠肺炎疫情仍在全球蔓延. 快速筛查并隔离感染者(包括无症状感染者)是遏制疫情传播的重要手段之一. 免疫层析技术是一种相对成熟的快速检测技术, 由于其操作简单、 反应时间短且结果稳定, 在生物标志物检测领域具有广阔的应用前景. 本文总结了目前免疫层析检测技术在新冠肺炎感染筛查领域的研究进展, 涵盖病毒抗体、 蛋白、 核酸等检测靶标, 并对不同检测方法的优势、 局限性进行了简要评述, 最后简单介绍了目前用于新冠肺炎感染筛查的免疫层析试纸的实际应用情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号