首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.  相似文献   

2.
Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.  相似文献   

3.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this spectroscopy. However, it can be demonstrated that by shaping the femtosecond pulses a selective excitation of specific vibrational modes is possible. We demonstrate that using a feedback-controlled optimization technique, molecule-specific CARS spectra can be obtained from a mixture of different substances. A careful analysis of the experimental results points to a nontrivial control of the vibrational mode dynamics in the electronic ground state of the molecules as underlying mechanism.  相似文献   

4.
We present a combination of time-dependent density functional theory with the quantum mechanical/molecular mechanical approach which can be applied to study nonadiabatic dynamical processes in molecular systems interacting with the environment. Our method is illustrated on the example of ultrafast excited state dynamics of indole in water. We compare the mechanisms of nonradiative relaxation and the electronic state lifetimes for isolated indole, indole in a sphere of classical water, and indole + 3H(2)O embedded in a classical water sphere. In the case of isolated indole, the initial excitation to the S(2) electronic state is followed by an ultrafast internal conversion to the S(1) state with a time constant of 17 fs. The S(1) state is long living (>30 ps) and deactivates to the ground state along the N-H stretching coordinate. This deactivation mechanism remains unchanged for indole in a classical water sphere. However, the lifetimes of the S(2) and S(1) electronic states are extended. The inclusion of three explicit water molecules opens a new relaxation channel which involves the electron transfer to the solvent, leading eventually to the formation of a solvated electron. The relaxation to the ground state takes place on a time scale of 60 fs and contributes to the lowering of the fluorescence quantum yield. Our simulations demonstrate the importance of including explicit water molecules in the theoretical treatment of solvated systems.  相似文献   

5.
Conversion of electronic excitation energy into vibrational energy was investigated for photochromic spiropyran molecules, using femtosecond UV-mid-IR pump-probe spectroscopy. We observe a weaker energy gap dependence than demanded by the "energy gap law". We demonstrate that large conformational changes accompanying the optical excitation can explain the observed time scale and energy gap dependence of ultrafast S(1) --> S(0) internal conversion processes. The possibility of dramatic deviations from standard energy gap law behavior is predicted. We conclude that controlling molecular conformations by rigid environments can have a substantial impact on photophysical and (bio)chemical processes.  相似文献   

6.
The ultrafast photo-induced dynamics of wild-type photoactive yellow protein and its site-directed mutant of E46Q in aqueous solution was studied at room temperature by femtosecond fluorescence spectroscopy using the optical Kerr-gate method. The vibronic structure appears, depending on the excitation photon energy, in the time-resolved fluorescence spectra just after photoexcitation, which winds with time and disappears on a time scale of sub-picoseconds. This result indicates that the wavepacket is localized in the electronic excited state followed by dumped oscillations and broadening, and also that the initial condition of the wavepacket prepared depending on the excitation photon energy affects much the following ultrafast dynamics in the electronic excited state.  相似文献   

7.
The velocity of a molecule evaporated from a mass‐selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high‐velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non‐ergodic events.  相似文献   

8.
9.
Replacement of thymidine in DNA by bromodeoxyuridine (BrdU) has long been known to enhance DNA damage and cell death induced by ionizing/UV radiation, but the mechanism of action of BrdU at the molecular level is poor understood. Using time-resolved femtosecond laser spectroscopy, we obtain the real-time observation of the transition state of the ultrafast electron transfer (ET) reaction of BrdU with the precursor to the hydrated electron, which is a general product in ionizing/UV radiation. The results show that the ET reaction is completed within 0.2 picosecond (ps) after the electronic excitation, leading to the formation of a transition state BrdU*- with a lifetime of approximately 1.5 ps that then dissociates into Br- and a high reactive radical dU*. The present results can greatly enhance our understanding not only of the mechanism of BrdU as a radio-/photosensitizer but of the role of prehydrated electrons in electron-initiated processes in biological and environmental systems.  相似文献   

10.
Electronically nonadiabatic processes such as ultrafast internal conversion (IC) from an upper electronic state (S(1)) to the ground electronic state (S(0)) though a conical intersection (CI), can play an essential role in the initial steps of the decomposition of energetic materials. Such nonradiative processes following electronic excitation can quench emission and store the excitation energy in the vibrational degrees of freedom of the ground electronic state. This excess vibrational energy in the ground electronic state can dissociate most of the chemical bonds of the molecule and can generate stable, small molecule products. The present study determines ultrafast IC dynamics of a model nitramine energetic material, dimethylnitramine (DMNA). Femtosecond (fs) pump-probe spectroscopy, for which a pump pulse at 271 nm and a probe pulse at 405.6 nm are used, is employed to elucidate the IC dynamics of this molecule from its S(1) excited state. A very short lifetime of the S(1) excited state (~50 ± 16 fs) is determined for DMNA. Complete active space self-consistent field (CASSCF) calculations show that an (S(1)/S(0))(CI) CI is responsible for this ultrafast decay from S(1) to S(0). This decay occurs through a reaction coordinate involving an out-of-plane bending mode of the DMNA NO(2) moiety. The 271 nm excitation of DMNA is not sufficient to dissociate the molecule on the S(1) potential energy surface (PES) through an adiabatic NO(2) elimination pathway.  相似文献   

11.
Although the photodissociation of nitroaromatics in low excitation electronic states has been extensively studied in recent decades, little is known about the highly excited electronic states. The fragmentation dynamics of three nitroaromatics, nitrobenzene, o-nitrotoluene, and m-nitrotoluene, in highly excited states, populated by the absorption of two photons at 271 nm, are studied with time-of-flight mass spectrometry. The temporal evolutions of the highly excited states are monitored by one-photon ionization at 408 nm. The transients of parent and fragment ions exhibit two ultrafast deactivation processes. The first process is ultrafast internal conversion from the initial excitation to Rydberg states in tens of femtoseconds. The second one is conversion from the Rydberg states to the vibrational manifold in the ground electronic states within hundreds of femtoseconds. The internal conversion process is accelerated by methyl substitution. In o-nitrotoluene, the two processes become much faster due to the hydrogen transfer from the CH(3) to the NO(2) group (ortho effect).  相似文献   

12.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, the gain of the temporal resolution entails a poor spectral resolution due to the inherent spectral width of the femtosecond excitation pulses. Modifications of the phase shape of one of the exciting pulses results in dramatic changes of the mode distribution reflected in coherent anti-Stokes Raman spectra. A feedback-controlled optimization of specific modes making use of phase and/or amplitude modulation of the pump laser pulse is applied to selectively influence the anti-Stokes signal spectrum. The optimization experiments are performed under electronically nonresonant and resonant conditions. The results are compared and the role of electronic resonances is analyzed. It can be clearly demonstrated that these resonances are of importance for a selective excitation by means of phase and amplitude modulation. The mode selective excitation under nonresonant conditions is determined mainly by the variation of the spectral phase of the laser pulse. Here, the modulation of the spectral amplitudes only has little influence on the mode ratios. In contrast to this, the phase as well as amplitude modulation contributes considerably to the control process under resonant conditions. A careful analysis of the experimental results reveals information about the mechanisms of the mode control, which partially involve molecular dynamics in the electronic states.  相似文献   

13.
Ultraviolet irradiation of DNA produces electronic excited states that predominantly eliminate the excitation energy by returning to the ground state (photostability) or following minor pathways into mutagenic photoproducts (photodamage). The cyclobutane pyrimidine dimer (CPD) formed from photodimerization of thymines in DNA is the most common form of photodamage. The underlying molecular processes governing photostability and photodamage of thymine-constituted DNA remain unclear. Here, a combined femtosecond broadband time-resolved fluorescence and transient absorption spectroscopies were employed to study a monomer thymidine and a single-stranded thymine oligonucleotide. We show that the protecting deactivation of a thymine multimer is due to an ultrafast single-base localized stepwise mechanism where the initial excited state decays via a doorway state to the ground state or proceeds via the doorway state to a triplet state identified as a major precursor for CPD photodamage. These results provide new mechanistic characterization of and a dynamic link between the photoexcitation of DNA and DNA photostability and photodamage.  相似文献   

14.
We have investigated the influence of nuclear geometric relaxation on the extent of the excited-state electronic delocalization in conjugated zinc porphyrin oligomers using ultrafast transient photoluminescence spectroscopy. By use of metal-coordinating templates that force the oligomers into specific geometries in solution we are able to distinguish clearly between relaxation effects arising from the two vibrational modes that preferentially couple to the electronic transitions in such materials, i.e., carbon-carbon bond stretches and inter-ring torsions. We find that light absorption generates an excited state that is initially strongly delocalized along the oligomer but contracts rapidly following vibrational relaxation of the nuclei along C-C stretch coordinates on the subpicosecond time scale. We are able to monitor such excitonic self-trapping effects by observing the extent to which the concomitant ultrafast rotation of the transition dipole moment is found to correlate with the degree of bending induced in the molecular backbone. We further demonstrate that interporphyrin torsional relaxation leads to a subsequent increase in the excited-state electronic delocalization on a longer time scale (approximately 100 ps). Such dynamic planarization of the molecular backbone is evident from the time-dependent increase in the overall emission intensity and red-shift in the peak emission energy that can be observed for wormlike flexible porphyrin octamers but not for torsionally rigidified cyclic or double-strand octamer complexes. These results therefore indicate that, following excitation, the initially highly delocalized excited-state wave function first contracts and then expands again along the conjugated backbone in accordance with the time periods for the vibrational modes coupled to the electronic transition.  相似文献   

15.
Based on the perfect ohmic drop compensation by online electronic positive feedback, ultrafast cyclic voltammetry with asymmetrical potential scan is achieved for the first time, with the reduction of anthracene acting as the test system. Compared with the traditional cyclic voltammetry utilizing symmetrical triangular waveform as the excitation one, the new method allows a simpler approach to mechanistic analysis of ultrafast chemical reactions coupled with a charge transfer. And perhaps more important, it also provides a way to eliminate the interference of the adsorbed product in dynamic monitoring. 2007 Zhi Yong Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

16.
17.
18.
Combined density functional and multireference configuration interaction methods have been used to calculate the electronic spectrum of 9H-adenine, the most stable tautomer of 6-aminopurine. In addition, constrained minimum energy paths on excited potential energy hypersurfaces have been determined along several relaxation coordinates. The minimum of the first (1)[n-->pi*] state has been located at an energy of 4.54 eV for a nuclear arrangement in which the amino group is pyramidal whereas the ring system remains planar. Close by, another minimum on the S(1) potential energy hypersurface has been detected in which the C(2) center is deflected out of the molecular plane and the electronic character of S(1) corresponds to a nearly equal mixture of (1)[pi-->pi*] and (1)[n-->pi*] configurations. The adiabatic excitation energy of this minimum amounts to 4.47 eV. Vertical and adiabatic excitation energies of the lowest n-->pi* and pi-->pi* transitions as well as transition moments and their directions are in very good agreement with experimental data and lend confidence to the present quantum chemical treatment. On the S(1) potential energy hypersurface, an energetically favorable path from the singlet n-->pi* minimum toward a conical intersection with the electronic ground state has been identified. Close to the conical intersection, the six-membered ring of adenine is strongly puckered and the electronic structure of the S(1) state corresponds to a pi-->pi* excitation. The energetic accessibility of this relaxation path at about 0.1 eV above the singlet n-->pi* minimum is presumably responsible for the ultrafast decay of 9H-adenine after photoexcitation and explains why sharp vibronic peaks can only be observed in a rather narrow wavelength range above the origin. The detected mechanism should be equally applicable to adenosine and 9-methyladenine because it involves primarily geometry changes in the six-membered ring whereas the nuclear arrangement of the five-membered ring (including the N(9) center) is largely preserved.  相似文献   

19.
Radiative relaxation of S 2p-excited hydrogen sulfide (H(2)S) is investigated by dispersed ultraviolet and visible fluorescence spectroscopies. We observe distinct changes in the fluorescence spectra as a function of excitation energy. Excitation to Rydberg states below the S 2p ionization threshold yields intense fluorescence from neutral and ionic atomic fragments (H, S(+), and S(2+)). In addition to the atomic emission, fluorescence of the molecular fragment ion HS(+) is preferably found after excitation of the S 2p electron into the unoccupied 6a(1) and 3b(2) orbitals with sigma(*) character. This is interpreted as evidence for ultrafast dissociation of the core-excited molecule prior to electronic relaxation. The rotationally resolved fluorescence spectra of the A (3)Pi-->X (3)Sigma(-) transition are analyzed in terms of the fragmentation dynamics leading to the formation of the excited molecular fragment ion, where changes in bond angle are discussed in terms of the rotational population.  相似文献   

20.
We investigated electronic energy-transfer dynamics in three model dimers within which coherent intramonomer nuclear motion had been induced by impulsive Raman excitation using an optimized, electronically preresonant control pulse. Calculations of the donor-survival probability, the ultrafast pump-probe signal, and the pump-probe difference signal are presented for dithia-anthracenophane and homodimers of 2-difluoromethylanthracene and 2-trifluoromethylanthracene. Survival probabilities and signals, along with phase-space analyses, elucidated the mechanisms, extent, and spectroscopic manifestations of external vibrational or torsional control over electronic excitation transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号