首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
A Schiff-base fluorescent sensor, 7-methoxychromone-3-carbaldehyde-(3′,4′-dimethyl)pyrrole hydrazone (MCPH), was synthesized. The new sensor showed high selectivity for Al3+ over other metal ions examined in acetonitrile. Upon binding Al3+, a significant fluorescence enhancement with a turn-on ratio over 101-fold was triggered. The detection limit of MCPH for Al3+ was 2.5?×?10?7?mol?L?1.  相似文献   

2.
Carbazole-based Schiff base chemosensor was synthesized in one-pot synthesis using 2-hydroxy-1-naphtaldehyde for fluorescent sensing of Al3+ ions. Characterization of the ligand (L) was revealed through spectroscopic and physicochemical techniques. The fluorescence emission responses of L to various metal ions and anions were investigated. The chelation was studied by UV–vis, 1H NMR, LC-MS/MS, fluorescence titration and Job’s plot analysis. Bathochromic shift resulted from charge transfer from L to electrophilic Al3+ ion was observed in the chelation of L with Al3+. The potentiality of L to be a distinguished probe to detect Al3+ ions was due to a chelation enhanced fluorescence (CHEF) effect, concomitant with noticeable fluorescent enhancement. A significant fluorescence enhancement at 533 nm was observed in ethanol–water (1:1, v/v) solution upon addition of Al3+ along with a distinct color change from yellow to white. Non-fluorescent ligand exposed highly sensitive turn-on fluorescent sensor behavior for selectively sensing Al3+ ions via 1:1 (ligand:metal) stoichiometry. The ligand’s specificity in the existence of other tested metal ions and anions indicated no observation in color change. The ligand-Al3+ complex formation was reversible upon addition of chelating agent EDTA. The ligand interacted with Al3+ ions with an association constant of Ka = 5 × 104 M?1. The limit of detection (LOD) was found to be 2.59 × 10-7 M. The synthesized Schiff base could efficiently detect Al3+ ions as a fluorescent sensor.  相似文献   

3.
In this study, an assay to quantify the presence of aluminum ions with a receptor containing naphthol and quinoline moieties was developed using a turn-on fluorescence enhancement approach. Upon treatment with aluminum ions, the fluorescence of the receptor was enhanced at 510 nm due to the formation of a complex between the ligand and aluminum ions at room temperature. As the concentration of Al3+ was increased, the fluorescence gradually increased. Other metal ions, such as K+, Ag+, Ca2+, Mg2+, Zn2+, Mn2+, Co2+, Ni2+, Cu2+, Cd2+, Cr3+, Fe3+, In3+, had no significant effect on the fluorescence.  相似文献   

4.
A new fluorescent sensor 1, based on thiophene and diethylaminophenol moieties, has been synthesized and its binding capabilities for metal-ion and anion recognition were investigated. The sensor 1 showed ‘turn-on’ fluorescence in the presence of Al3+ and F?. The sensing behaviors of 1 with Al3+ and F? were studied by using photophysical experiments, 1H NMR titration, and ESI-mass spectrometry analysis. The detection limits for the analysis of Al3+ and F? were found to be 0.41 μM and 14.36 μM, respectively, which are below the WHO guidelines for drinking water (7.41 μM for Al3+ and 79 μM for F?). Moreover, turn-on fluorescence of 1 toward Al3+ and F? caused by intramolecular charge transfer (ICT) was well explained by density functional theory (DFT) calculations. Importantly, 1 could be used to detect Al3+ in the living cells.  相似文献   

5.
A simple Al3+ fluorescent chemosensor (1) based on diacylhydrazone has been designed and synthesized by the condensation reaction of 2-hydroxy naphthaldehyde and metaphthalic hydrazide. The chemosensor 1 displays a specific and sensitive response to Al3+ over other cations in DMSO solution. Upon the addition of DMSO solution of Al3+, the sensor 1 shows an immediate fluorescence ‘turn-on’ response and emitting strong blue emission with visible color change from colorless to green. The fluorescence quantum yield enhanced from 7.24% to 48.68%. Meanwhile, the fluorescence and UV absorption spectra detection limits of the chemosensor 1 for Al3+ were 2.0 × 10?7 M and 5.6 × 10?7 M respectively, indicating the high sensitivity of 1 to Al3+. Furthermore, test strips based on 1 were fabricated, which could be used as a convenient test kit for the detection of Al3+ and an efficient Al3+ controlled fluorescent security display materials.  相似文献   

6.
A fluorescent Al3+ chemo-sensor, 1-phenyl-3-methyl-5-hydroxypyrazole-4-acetone-(3′,4′-dimethylpyrrole-2′-formyl) hydrazone (L), has been synthesized and characterized. L can detect Al3+ in ethanol solution with a significant fluorescence enhancement of a turn-on ratio over 155-fold due to the formation of a 1?:?1 complex which is based on the molar ratio between L and Al3+ ions, and the 1?:?1 stoichiometric complexation can be obtained from density functional theory calculations. No significant interference of other metal ions such as Na+, K+, Mg2+, Ca2+, Ni2+, Zn2+, Cd2+, Co2+, Cu2+, Fe3+, Cr3+, Pb2+, and Ag+ was found. The detection limit for Al3+ was 5?×?10?9?M in ethanol.  相似文献   

7.
A new tricarbocyanine-based chemosensor exhibited a dramatic Al3+-specific fluorescence turn-on response in the near-infrared (NIR) region. The receptor was found to be highly selective towards Al3+ over other metal ions in physiological condition. The sensor was non-toxic and could thus be employed as an imaging probe for detecting intracellular Al3+ in live cells. Interestingly, upon interaction with DNA in solution, the L–Al3+ ensemble rendered tracking of DNase activity in solution through a systematic reduction in the fluorescence emission intensity.  相似文献   

8.
A new fluorescent turn-on chemosensor for Al3+ based on a diarylethene unit was designed and synthesized. Photochromism, fluorescence switch, and metal ion recognition behaviors of this diarylethene derivative were investigated by absorption and fluorescence emission spectra. It shows an outstanding fluorometric sensing ability toward Al3+ ion, and the detection limit was measured to be 9.3 × 10?8 mol L?1 via fluorescence methods. Based on these interesting properties, a combinational logic circuit was constructed successfully.  相似文献   

9.
The synthesis of a novel, and highly selective Fe3+ ion sensor based on anthrone-spirolactam and its quinoline hybrid ligand is reported. The designed ligand displayed selective detection of Fe3+ ions with enhanced fluorescence emission. The complexation of Fe3+ ion led to a red shift of 32 nm from 420 nm to 452 nm, and a several fold increase in intensity with fluorescent green emission. The complexation (detection) of Fe3+ ions with ligand resulted in chelation enhanced fluorescence and intramolecular charge transfer through the inhibition of C=N isomerization. This hybrid sensor shows high sensitivity and selectivity, spontaneous response, and works on a wide pH range a minimum detection limit of 6.83 × 10−8 M. Importantly, the sensor works through the fluorescence turn-on mechanism that overcomes the paramagnetic effect of Fe3+ ions. The binding mechanism between the ligand and the Fe3+ ions was established from the Job's plot method, optical studies, Fourier transfor infrared spectroscopy, NMR titration, fluorescence life-time studies, and density functional theory optimization. The sensor displayed excellent results in the quantification of Fe3+ ions from real water samples. Furthermore, due to its biocompatibility nature, fluorescent spotting of Fe3+ ions in live cells revealed its bioimaging applications.  相似文献   

10.
A rhodamine spirolactam derivative (1) is developed as a colormetric and fluorescent probe for trivalent aluminum ions (Al3+). It exhibits a highly sensitive “turn-on” fluorescent response toward Al3+ with a 70-fold fluorescence intensity enhancement under 2 equiv. of Al3+ added. The probe can be applied to the quantification of Al3+ with a linear range covering from 5.0 × 10−7 to 2.0 × 10−5 M and a detection limit of 4.0 × 10−8 M. Most importantly, the fluorescence changes of the probe are remarkably specific for Al3+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Al3+ is pH independent in neutral condition (pH 6.0–8.0) and the response of the probe is fast (response time less than 3 min). In addition, the proposed probe has been used to detect Al3+ in water samples and image Al3+ in living cells with satisfying results.  相似文献   

11.
Abstract

A new multifunctional colorimetric and fluorescent chemosensor 1 for Fe3+/2+ and Al3+ has been synthesized in the one-step procedure. The sensor 1 detected both Fe2+ and Fe3+ through the color change from yellow to brown and Al3+ via turn-on fluorescence. The binding stoichiometries of sensor 1 with Fe3+/2+ and Al3+ were proposed to be 1:1 with the analyses of ESI-mass and Job plot. Importantly, the detection limits of 1 for Fe3+/2+ (2.11 and 2.70 μM) and Al3+ (3.44 μM) were lower than the EPA guideline (5.37 μM) for Fe3+/2+ and WHO guideline (7.41 μM) for Al3+. Compound 1 was used to quantify ferric species (Fe3+) in real samples. Moreover, the sensing processes for Fe3+/2+ and Al3+ were proposed with the spectroscopic studies and theoretical calculations.  相似文献   

12.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

13.
A new asymmetric perfluordiarylethene (1O) was synthesized using 4, 5-[bis-(5-ethylacetate-yl)-2-thienyl]-1H-imidazole as a functional group. 1O exhibited favorable reversible cyclization and cycloreversion reactions upon alternating irradiation with UV and visible light. Both of its open- and closed-ring isomers were found to be highly selective towards Cu2+ with significant absorption and color changes, which could be used as a ‘naked-eye’ colorimetric sensor for Cu2+ detection. Upon exposure to acid, its fluorescence dramatically enhanced by 14-fold with a color change from dark to bright cyan due to the formation of the protonated compound. Moreover, 1O showed obvious fluorescence “turn-on” signal response towards Al3+, and the detection limit for Al3+ was determined to be 4.8 × 10?9 mol L?1. Based on the fluorescence signals of 1O, a combinational stimuli logic circuit were designed by using the fluorescence intensity as the output signal with the inputs of lights, Al3+ and EDTA. Finally, 1O could be used as a biological probe for detecting intracellular Al3+ in a physiological environmental.  相似文献   

14.
Abstract

Chemosensor 1 has been synthesized via a one-pot synthetic route incorporating anthracene and azomethine (HC═N—) units acting as signaling and binding units, respectively. Chemosensor 1 offered selective colorimetric and fluorometric response towards Al3+ and Hg2+ ions among other cations in CH3OH. Solution of 1 in methanol exhibited a naked eye color transition from yellow to colorless on addition of Al3+ and Hg2+ ions. In case of emission experiments, non-fluorescent solution of 1 showed major enhancement in intensity giving blue fluorescence for both metal ions. The limits of detection were calculated to be 1.04 and 0.8 µM for Al3+ and Hg2+, respectively, using fluorescence titrations. Further, reduced form of Schiff base 1 (2) has also been synthesized in order to compare the importance of azomethine (HC═N—) and (H2C—NH—) moieties in selective coordination. However, the reduced analogue 2 did not exhibit selective detection towards any of the ions.  相似文献   

15.
Abstract

The ensemble of 2,6-bis(2-chlorophenyl)dithiazolo[4,5-b:5',4'-e]pyridine 1 with Pd2+ ions (1?Pd2+) was prepared for the detection of cyanide ions (CN¯) in 50% aqueous methanol. Among the tested metal ions, only Pd2+ sensitively induced the red shift of the absorption bands and the complete decrease of fluorescence emission. The detection limit toward Pd2+ was 2?ppb. The ensemble 1?Pd2+ selectively and rapidly detected a low concentration of cyanide ions by a colorimetric change (40?ppb) as well as a “turn-on” fluorescent response (5?ppb). Job’s plot revealed the complex formation with 1:1 stoichiometry. The binding and replacement mode of 1?Pd2+ and CN¯ were also confirmed by 1H NMR titrations and IR analysis. In general, a fast and selective recognition of CN¯ is reported.  相似文献   

16.

A novel “on–off” Al3+ ions fluorescence-enhanced sensor (E)-1-(((2-hydroxyphenyl) imino)methyl)naphthalen-2-ol (AH-2) and its hydrogel hybrid (PAMN) were synthesized. AH-2 showed excellent selectivity and ultrasensitive to Al3+ ions; the detection limit was 2.36?×?10–9 M. The most plausible complexation mechanism was studied by 1H NMR, FT-IR, HR-MS, Job’s plot and theoretical calculation. And, it was interesting that PAMN could adsorb Al3+ ions with a removal rate of over 99%, which also could easily be distinguished by the naked eye in UV lamp (365 nm). Before and after adsorption of Al3+ ions, the microstructures of PAMN were analyzed by scanning electron microscope and X-ray energy spectrometer. The silica gel detect plates prepared in this work could rapidly and conveniently detect Al3+ ions with a concentration greater than 5?×?10–6 M (0.13 mg/L) in aqueous solution, and the detection concentration (0.13 mg/L) was lower than the national standard concentration of Al3+ ions (0.2 mg/L) in city tap water of china.

  相似文献   

17.
A ratiometric fluorescent chemosensor 1 was developed for the detection of Al3+ in aqueous solution based on aggregation-induced emmision (AIE). The chemosensor showed the fluorescence of its aggregated state and Al3+-chelated soluble state in the absence and in the presence of Al3+, respectively, and resulted in a fluorescence ratio (I461/I537) response to Al3+ in neutral aqueous solution at a detection limit as low as 0.29 μmol L−1. The method was also highly selective to Al3+ over other physiological relevant metal ions investigated in this study. Taking advantage of its AIE characteristics, the chemosensor was successfully applied on test papers for simple and rapid detection of Al3+. Moreover, the application of 1 for the imaging of Al3+ in living cells by ratiometric fluorescence changes was also achieved.  相似文献   

18.
A simple Schiff-base derivative with salicylaldehyde moieties as fluorescent probe 1 was reported by aggregation-induced emission (AIE) characterization for the detection of metal ions. Spectral analysis revealed that probe 1 was highly selective and sensitive to Al3+. The probe 1 was also subject to minimal interference from other common competitive metal ions. The detection limit of Al3+ was 0.4 μM, which is considerably lower than the World Health Organization standard (7.41 μM), and the acceptable level of Al3+ (1.85 μM) in drinking water. The Job's plot and the results of 1H-NMR and FT-IR analyses indicated that the binding stoichiometry ratio of probe 1 to Al3+ was 1:2. Probe 1 demonstrated a fluorescence-enhanced response upon binding with Al3+ based on AIE characterization. This response was due to the restricted molecular rotation and increased rigidity of the molecular assembly. Probe 1 exhibited good biocompatibility, and Al3+ was detected in live cells. Therefore, probe 1 is a promising fluorescence probe for Al3+ detection in the environment.  相似文献   

19.
Two new reactive and highly selective turn-on fluorescent chemosensors based on the position of ring annulation of the naphthalene–thiazole moiety for aluminum ions in ethanol, were synthesized and investigated. It was found that sensors 2 and 4 exhibited a remarkable enhancement of emission upon complexation with Al3+. A TD-B3LYP/6-31G(d,p) calculation was performed to characterize the nature of the fluorescence behavior of sensors 2 and 4 upon Al3+ complexation. The mechanism of fluorescence was based on the cation promoted hydrolysis of ester and subsequent complexation. The combination of experimental and computational analyses provides a more complete understanding of the molecular level origin of these types of unique photophysical properties.  相似文献   

20.
This paper describes the investigation of a molecularly imprinted polymer (MIP) as a sensing receptor for Al3+ ion detection by using an optical approach. Al3+ ion was adopted as the template molecule and 8-hydroxyquinoline sulfonic acid ligand as the fluorescence tag. The polymer was synthesised using acrylamide as monomer, 2-hydroxyethyl methacrylate as co-monomer and ethylene glycol dimethracylate as cross-linker. The free radical polymerisation was performed in methanol and initiated by 2,2′-azobisisobutyronitrile at 70 °C. The imprinted polymer was fluorometrically characterised using a fibre optic attachment in a self-designed flow-cell. NaF was used to leach the Al3+ ion from the MIP. The optimum pH for the rebinding of Al3+ ion with the leached polymer was found to be pH 5 and the fluorescence response was found to be stable within the buffer strength range of 0.05–0.10 M. The fluorescence intensity during Al3+ ion rebinding was inversely dependent on temperature, and a low interference response (<3%) toward metal ions except for Cu2+ and Zn2+ ions was observed. The polymer rebinding repeatability study conducted over 9 cycles with Al3+ ion (0.8×10−4 M) was found to give an RSD value of 2.82% with a standard deviation of 0.53. The dynamic range of the system was found to be linear up to 1.0×10−4 M Al3+ ion with a limit of detection of 3.62 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号