首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
Recent developments in fluorescence microscopy call for novel small‐molecule‐based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live‐cell single‐molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live‐cell experiments. At the same time, quality of super‐resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small‐molecule label comprising both fluorogenic and self‐blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single‐molecule localization microscopy on live‐cell samples.  相似文献   

2.
Sensitive live-cell fluorescence microscopy and single-molecule imaging are severely limited by rapid photobleaching of fluorescent probes. Herein, we show how to circumvent this problem using a novel, generic labeling strategy. Small nickel-nitrilotriacetate fluorescent probes are reversibly bound to oligohistidine sequences of exposed proteins on cell surfaces, permitting selective observation of the proteins by fluorescence microscopy. Photobleached probes are removed by washing and replaced by new fluorophores, thus enabling repetitive acquisition of single-molecule trajectories on the same cell and allowing variation of experimental conditions between acquisitions. This method offers free choice of fluorophores while being minimally perturbing. The strength of the method is demonstrated by labeling engineered polyhistidine sequences of the serotonin-gated 5-HT(3) receptor on the surface of live mammalian cells. Single-molecule microscopy reveals pronounced heterogeneous mobility patterns of the 5-HT(3) receptor. After activating the receptor with serotonin, the number of immobile receptors increases substantially, which might be important for receptor regulation at synapses.  相似文献   

3.
Red-to-NIR absorption and emission wavelengths are key requirements for intravital bioimaging. One of the way to reach such excitation wavelengths is to use two-photon excitation. Unfortunately, there is still a lack of two-photon excitable fluorophores that are both efficient and biocompatible. Thus, we design a series of biocompatible quadrupolar dyes in order to study their ability to be used for live-cell imaging, and in particular for two-photon microscopy. Hence, we report the synthesis of 5 probes based on different donor cores (phenoxazine, acridane, phenazasiline and phenothiazine) and the study of their linear and non-linear photophysical properties. TD-DFT calculations were performed and were able to highlight the structure-property relationship of this series. All these studies highlight the great potential of three of these biocompatible dyes for two-photon microscopy, as they both exhibit high two-photon cross-sections (up to 3650 GM) and emit orange to red light. This potential was confirmed through live-cell two-photon microscopy experiments, leading to images with very high brightness and contrast.  相似文献   

4.
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.  相似文献   

5.
In DNA points accumulation in nanoscale topography (DNA-PAINT), capable of single-molecule localization microscopy with sub-10-nm resolution, the high background stemming from the unbound fluorescent probes in solution limits the imaging speed and throughput. Herein, we reductively cage the fluorescent DNA probes conjugated with a cyanine dye to hydrocyanine, acting as a photoactivatable dark state. The additional dark state from caging lowered the fluorescent background while enabling optically selective activation by total internal reflection (TIR) illumination at 405 nm. These benefits from “reductive caging” helped to increase the localization density or the imaging speed while preserving the image quality. With the aid of high-density analysis, we could further increase the imaging speed of conventional DNA-PAINT by two orders of magnitude, making DNA-PAINT capable of high-throughput super-resolution imaging.  相似文献   

6.
原子力显微镜(Atomic force microscopy,AFM)及荧光显微镜(Fluorescence microscopy,FM)是目前活细胞单分子分析检测中最常用的两种工具.结合两种显微镜的优势,发展高时空分辨、多功能的AFM-FM联用技术成为近年该领域的研究热点.本文简述了AFM单分子力谱和FM单分子荧光成像的原理,总结了AFM-FM联用系统在仪器研制方面的发展概况,并结合本课题组在应用AFM-FM联用技术研究细胞膜上配受体相互作用等方面的工作,介绍了其在活细胞单分子检测中的应用进展.  相似文献   

7.
This study introduces a method to detect individual oxygen molecules by fluorescence microscopy of single hemocyanins. These respiratory proteins from a tarantula bind oxygen with high affinity. A spectrometric signature of the oxygenated protein is transferred to an attached fluorescence label, which can be detected at the single-molecule level. This technique opens new perspectives for the development of small and sensitive oxygen sensors as well as for the investigation of cooperative oxygen binding in respiratory proteins.  相似文献   

8.
We report the observation of the redox state of the blue copper protein azurin on the single-molecule level. The fluorescence of a small fluorophore attached to the protein is modulated by the change in absorption of the copper center via fluorescence resonance energy transfer (FRET). In our model system, the fluorescence label Cy5 was coupled to azurin from Pseudomonas aeruginosa via cysteine K27C. The Cy5 fluorescence was partially quenched by the absorption of the copper center of azurin in its oxidized state. In the reduced state, absorption is negligible, and thus no quenching occurs. We report on single-molecule measurements, both in solution by using fluorescence correlation spectroscopy (FCS) combined with fluorescence intensity distribution analysis (FIDA), and on surfaces by using wide-field fluorescence microscopy.  相似文献   

9.
Single-molecule localization microscopy (SMLM) can reveal nanometric details of biological samples, but its high phototoxicity hampers long-term imaging in live specimens. A significant part of this phototoxicity stems from repeated irradiations that are necessary for controlled switching of fluorophores to maintain the sparse labeling of the sample. Lower phototoxicity can be obtained using fluorophores that blink spontaneously, but controlling the density of single-molecule emitters is challenging. We recently developed photoregulated fluxional fluorophores (PFFs) that combine the benefits of spontaneously blinking dyes with photocontrol of emitter density. These dyes, however, were limited to imaging acidic organelles in live cells. Herein, we report a systematic study of PFFs that culminates in probes that are functional at physiological pH and operate at longer wavelengths than their predecessors. Moreover, these probes are compatible with HaloTag labeling, thus enabling timelapse, single-molecule imaging of specific protein targets for exceptionally long times.  相似文献   

10.
We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy.  相似文献   

11.
In this report, we show the successful transfer of a sophisticated electroactive immobilization and release strategy to an indium tin oxide (ITO) surface to generate (1) optically transparent, robust, and renewable surfaces, (2) inert surfaces that resist nonspecific protein adsorption and cell attachment, and (3) tailored biospecific surfaces for live-cell high-resolution fluorescence microscopy of cell culture. By comparing the surface chemistry properties on both ITO and gold surfaces, we demonstrate the ITO surfaces are superior to gold as a renewable surface, in robustness (durability), and as an optically transparent material for live-cell fluorescence microscopy studies of cell behavior. These advantages will make ITO surfaces a desired platform for numerous biosensor and microarray applications and as model substrates for various cell biological studies.  相似文献   

12.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   

13.
Advanced fluorescence microscopy including single-molecule localization-based super-resolution imaging techniques requires bright and photostable dyes or proteins as fluorophores. The photophysical properties of fluorophores have been proven to be crucial for super-resolution microscopy’s localization precision and imaging resolution. Fluorophores TAMRA and Atto Rho6G, which can interact with macrocyclic host cucurbit[7]uril (CB7) to form host-guest compounds, were found to improve the fluorescence intensity and lifetimes of these dyes. We enhanced the localization precision of direct stochastic optical reconstruction microscopy (dSTORM) by introducing CB7 into the imaging buffer, and showed that the number of photons as well as localizations of both TAMRA and Atto Rho6G increase over 2 times.  相似文献   

14.
The advent of a new class of force microscopes designed specifically to “pull” biomolecules has allowed non-specialists to use force microscopy as a tool to study single-molecule protein unfolding. This powerful new technique has the potential to explore regions of the protein energy landscape that are not accessible in conventional bulk studies. It has the added advantage of allowing direct comparison with single-molecule simulation experiments. However, as with any new technique, there is currently no well described consensus for carrying out these experiments. Adoption of standard schemes of data selection and analysis will facilitate comparison of data from different laboratories and on different proteins. In this review, some guidelines and principles, which have been adopted by our laboratories, are suggested. The issues associated with collecting sufficient high quality data and the analysis of those data are discussed. In single-molecule studies, there is an added complication since an element of judgement has to be applied in selecting data to analyse; we propose criteria to make this process more objective. The principal sources of error are identified and standardised methods of selecting and analysing the data are proposed. The errors associated with the kinetic parameters obtained from such experiments are evaluated. The information that can be obtained from dynamic force experiments is compared, both quantitatively and qualitatively to that derived from conventional protein folding studies.  相似文献   

15.
The SERS-based detection of protein sequences with single-residue sensitivity suffers from signal dominance of aromatic amino acid residues and backbones, impeding detection of non-aromatic amino acid residues. Herein, we trap a gold nanoparticle in a plasmonic nanohole to generate a single SERS hot spot for single-molecule detection of 2 similar polypeptides (vasopressin and oxytocin) and 10 distinct amino acids that constitute the 2 polypeptides. Significantly, both aromatic and non-aromatic amino acids are detected and discriminated at the single-molecule level either at individual amino acid molecules or within the polypeptide chains. Correlated with molecular dynamics simulations, our results suggest that the signal dominance due to large spatial occupancy of aromatic rings of the polypeptide sidechains on gold surfaces can be overcome by the high localization of the single hot spot. The superior spectral and spatial discriminative power of our approach can be applied to single-protein analysis, fingerprinting, and sequencing.  相似文献   

16.
Complexity and heterogeneity are common denominators of the many molecular events taking place inside the cell. Single-molecule techniques are important tools to quantify the actions of biomolecules. Heterogeneous interactions between multiple proteins, however, are difficult to study with these technologies. One solution is to integrate optical trapping with micro-fluidics and single-molecule fluorescence microscopy. This combination opens the possibility to study heterogeneous/complex protein interactions with unprecedented levels of precision and control. It is particularly powerful for the study of DNA-protein interactions as it allows manipulating the DNA while at the same time, individual proteins binding to it can be visualized. In this work, we aim to illustrate several published and unpublished key results employing the combination of fluorescence microscopy and optical tweezers. Examples are recent studies of the structural properties of DNA and DNA-protein complexes, the molecular mechanisms of nucleo-protein filament assembly on DNA and the motion of DNA-bound proteins. In addition, we present new results demonstrating that single, fluorescently labeled proteins bound to individual, optically trapped DNA molecules can already be tracked with localization accuracy in the sub-10 nm range at tensions above 1 pN. These experiments by us and others demonstrate the enormous potential of this combination of single-molecule techniques for the investigation of complex DNA-protein interactions.  相似文献   

17.
The spatial resolution of single-molecule localization microscopy is limited by the photon number of a single switching event because of the difficulty of correlating switching events dispersed in time. Here we overcome this limitation by developing a new class of photoswitching semiconducting polymer dots (Pdots) with structured and highly dispersed single-particle spectra. We imaged the Pdots at the first and the second vibronic emission peaks and used the ratio of peak intensities as a spectral coding. By correlating switching events using the spectral coding and performing 4–9 frame binning, we achieved a 2–3 fold experimental resolution improvement versus conventional superresolution imaging. We applied this method to count and map SV2 and proton ATPase proteins on synaptic vesicles (SVs). The results reveal that these proteins are trafficked and organized with high precision, showing unprecedented level of detail about the composition and structure of SVs.  相似文献   

18.
The precision of single‐molecule localization‐based super‐resolution microscopy, including dSTORM, critically depends on the number of detected photons per localization. Recently, reductive caging of fluorescent dyes followed by UV‐induced recovery in oxidative buffer systems was used to increase the photon yield and thereby the localization precision in single‐color dSTORM. By screening 39 dyes for their fluorescence caging and recovery kinetics, we identify novel dyes that are suitable for multicolor caged dSTORM. Using a dye pair suited for registration error‐free multicolor dSTORM based on spectral demixing (SD), a multicolor localization precision below 15 nm was achieved. Caged SD‐dSTORM can resolve the ultrastructure of single 40 nm synaptic vesicles in brain sections similar to images obtained by immuno‐electron microscopy, yet with much improved label density in two independent channels.  相似文献   

19.
Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors. We introduce a live-cell points accumulation for imaging in nanoscale topography (PAINT) method that exploits aptamers as minimally invasive affinity probes. Localization and tracking of individual receptors are based on stochastic and transient binding between aptamers and their targets. We demonstrated single-molecule imaging of a model tumor marker (EGFR) on a panel of living cancer cells. Affinity to EGFR was finely tuned by rational engineering of aptamer sequences to define receptor motion and/or native receptor density.  相似文献   

20.
DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection. Fluorescence spots of different intensity and size have been directly visualized by optical means with a spatial resolution of less than 100 nm. Intensity- and size-distribution histograms of the DC-SIGN fluorescent spots confirm that approximately 80 % of the receptors are organized in nanosized domains randomly distributed on the cell membrane. Intensity-size correlation analysis revealed remarkable heterogeneity in the molecular packing density of the domains. Furthermore, we have mapped the intermolecular organization within a dense cluster by means of sequential NSOM imaging combined with discrete single-molecule photobleaching. In this way we have determined the spatial coordinates of 13 different individual dyes, with a localization accuracy of 6 nm. Our experimental observations are all consistent with an arrangement of DC-SIGN designed to maximize its chances of binding to a wide range of microorganisms. Our data also illustrate the potential of NSOM as an ultrasensitive, high-resolution technique to probe nanometer-scale organization of molecules on the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号