首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
石墨相氮化碳量子点的制备及应用的研究进展   总被引:1,自引:0,他引:1  
王庆  陈宇飞  李萍  程健 《化学通报》2020,83(3):218-225,264
近年来,石墨相氮化碳(g-C3N4)因其稳定的物理化学性能和良好的生物相容性而受到研究者关注。与块体g-C3N4相比,石墨相氮化碳量子点(g-CNQDs)尺寸更小、荧光效率更高,且具有量子限域效应,因此拥有特殊的理化性质与更好的光催化性能。本文主要从g-CNQDs的制备策略和应用展开讨论,着重综述了微波辅助法、低温固相法、热化学腐蚀法和电化学刻蚀法制备g-CNQDs,以及g-CNQDs在催化剂、离子检测、生物传感与诊疗等领域的最新应用研究进展;指出了目前g-CNQDs在性质、制备和应用等研究方面的重点和难点;最后对g-CNQDs存在的问题和未来的发展方向作出了展望。  相似文献   

2.
Arrays of ultrasmall and uniform carbon nanodots (CDs) are of pronounced interest for applications in optical devices. Herein, we describe a low-temperature calcination approach with rather inexpensive reactants. After glucose molecules had been loaded into the pores of metal–organic frameworks (MOFs), well-defined CD arrays were produced by heating to 200 °C. The size and spacing of the CDs could be controlled by the choice of templating MOF: HKUST-1, ZIF-8, or MIL-101. The sizes of the obtained CDs were approximately 1.5, 2.0, and 3.2 nm, which are close to the corresponding MOF pores sizes. The CD arrays exhibited interesting photophysical properties, including photoluminescence with tunable emission and pronounced nonlinear optical (NLO) effects. The NLO properties of the obtained CD arrays were significantly different from those of a CD suspension, thus indicating the existence of collective phenomena.  相似文献   

3.
Various hierarchical micro/mesoporous MOFs based on {[Al(μ-OH)(1,4-NDC)]⋅H2O} ( MOF1 ) with tunable porosities (pore volume and surface area) have been synthesized by assembling AlIII and 1,4-NDC (1,4-naphthalenedicarboxylate) under microwave irradiation by varying water/ethanol solvent ratio. Water/ethanol mixture has played a crucial role in the mesopore generation in MOF1M25 , MOF1M50 , and MOF1M75 , which is achieved by in situ formation of water/ethanol clusters. By adjusting the ratio of water/ethanol, the particle size, surface area and micro/mesopore volume fraction of the MOFs are controlled. Furthermore, reaction time plays a critical role in mesopore formation as realized by varying reaction time for the MOF with 50 % ethanol ( MOF1M50 ). Additionally, hierarchical MOF ( MOF1M50 ) has been used as a template for the stabilization of MAPbBr3 (MA=methylammonium) perovskite quantum dots (PQDs). MAPbBr3 PQDs are grown inside MOF1M50 , where mesopores control the size of PQDs which leads to quantum confinement.  相似文献   

4.
Achieving control over the size distribution of metal–organic-framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST-1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene-1,3,5-tricarboxylate (BTC3−) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST-1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3−. These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.  相似文献   

5.
基于类石墨相氮化碳量子点( g-CNQDs)建立了一种高效、灵敏、简单的荧光化学传感器用于检测水相中的三硝基苯酚( TNP)。 g-CNQDs是一种新型纳米半导体材料,具有很好的水溶性、生物相容性、环境友好、良好荧光特性,无毒性,通过简单的固相反应法,制备了g-CNQDs材料,探讨了g-CNQDs与TNP之间的相互作用(如仔-仔共轭作用、氢键相互作用和静电作用)引起的g-CNQDs荧光猝灭过程。此荧光传感器响应速度快,对TNP具有良好的选择性。实验结果表明,本方法在0.1~100 nmol/L和0.1~100μmol/L的浓度范围内呈现良好的线性关系,检出限为0.05 nmol/L ( S/N=3)。 g-CNQDs材料在化学传感器方面有很好的应用前景,利用此荧光传感器对实际水样中的TNP进行了检测,为监测水环境中TNP提供了新方法。  相似文献   

6.
A novel LiFePO4/Carbon aerogel (LFP/CA) nanocomposite with 3D conductive network structure was synthesized by using carbon aerogels as both template and conductive framework, and subsequently wet impregnating LiFePO4 precursor inside. The LFP/CA nanocomposite was characterized by X-ray diffraction (XRD), TG, SEM, TEM, nitrogen sorption, electrochemical impedance spectra and charge/discharge test. It was found that the LFP/CA featured a 3D conductive network structure with LiFePO4 nanoparticles ca. 10–30 nm coated on the inside wall of the pore of CA. The LFP/CA electrodes delivered discharge capacity for LiFePO4 of 157.4, 147.2, 139.7, 116.3 and 91.8 mA h g−1 at 1 °C, 5 °C, 10 °C, 20 °C and 40 °C, respectively. In addition, the LFP/CA electrode exhibited good cycling performance, which lost less than 1% of discharge capacity over 100 cycles at a rate of 10 °C. The good high rate performances of LiFePO4 were attributed to the unique 3D conductive network structure of the nanocomposite.  相似文献   

7.
Metal–organic frameworks (MOFs) are promising high surface area coordination polymers with tunable pore structures and functionality; however, a lack of good size and morphological control over the as‐prepared MOFs has persisted as an issue in their application. Herein, we show how a robust protein template, tobacco mosaic virus (TMV), can be used to regulate the size and shape of as‐fabricated MOF materials. We were able to obtain discrete rod‐shaped TMV@MOF core–shell hybrids with good uniformity, and their diameters could be tuned by adjusting the synthetic conditions, which can also significantly impact the stability of the core–shell composite. More interestingly, the virus particle underneath the MOF shell can be chemically modified using a standard bioconjugation reaction, showing mass transportation within the MOF shell.  相似文献   

8.
Global warming is considered as one of the great challenges of the twenty‐first century. Application of CO2 capture and storage technologies to flue gas is considered to be a useful method of lessening global warning. Highly porous carbon has played an important role in tackling energy and environmental problems. We attempted to synthesize a highly porous carbon adsorbent by carbonizing a highly crystalline metal–organic framework (MOF) without any carbon precursors and focused on the adsorption of CO2 and CH4 gases and CO2/CH4 selectivity at 298, 323 and 348 K using a volumetric apparatus. The MOF‐derived porous carbon (MDC) was prepared by direct carbonization of MOF‐199 as a template at 900 °C under nitrogen atmosphere. Amino‐impregnated MDC samples exhibited enhanced adsorption capacities by a combination of physical and chemical adsorption. Polyethyleneimine (PEI) was selected as the amine source, which was found to greatly enhance CO2 capture when supported on the porous carbon. Novel PEI‐impregnated MDC nanocomposites were synthesized by wetness impregnation and then characterized using various methods.  相似文献   

9.
Hydrogen is a green energy carrier. Chemical looping reforming of biomass and its derivatives is a promising way for hydrogen production. However, the removal of carbon dioxide is costly and inefficient with the traditional chemical absorption methods. The objective of this article is to find a new material with low energy consumption and high capacity for carbon dioxide storage. A metal organic framework (MOF) material (e.g., CuBTC) was prepared using the hydrothermal synthesis method. The synthesized material was characterized by X-ray diffraction, ?196 °C N2 adsorption/desorption isotherms, and thermogravimetry analysis to obtain its physical properties. Then BET, t-plot, and density functional theory (DFT) methods were used to acquire its specific surface area and pore textural properties. Its carbon dioxide adsorption capacity was evaluated using a micromeritics ASAP 2000 instrument. The results show that the decomposition temperature of the synthesized CuBTC material is 300 °C. Besides, high CO2 adsorption capacity (4 mmol g?1) and low N2 adsorption capacity were obtained at 0 °C and atmospheric pressure. These results indicate that the synthesized MOF material has a high efficiency for CO2 separation. From this study, it is expected that this MOF material could be used in adsorption and separation of carbon dioxide in chemical looping reforming process for hydrogen production in the near future.  相似文献   

10.
Porous carbon nitride frameworks (PCNFs) with uniform and rich nitrogen dopants and abundant porosity were successfully fabricated through the direct carbonization of the covalent triazine frameworks (CTFs) at different pyrolysis temperatures and used as supports to anchor and stabilize Ag nanoparticles (NPs) for catalytic CO2 conversion. Importantly, the pyrolysis temperature plays a crucial role in the properties of porous carbon nitride frameworks. The material carbonized at 700 °C showed the highest surface area and micro- and mesoporous structure with a certain interlayer distance. Taking advantage of their unique surface characteristics, PCNF-supported Ag NP catalysts (Ag/PCNF-T, T=pyrolysis temperature) were prepared by a simple chemical method. A series of characterizations revealed that Ag NPs are embedded in the porous carbon nitride frameworks and confined to a relatively small size with high dispersion owing to the assistance of the abundant surface groups and porous structures. The as-obtained Ag/PCNF-T catalysts, especially Ag/PCNF-700, showed excellent catalytic activity, selectivity, and stability for the carboxylation of CO2 with terminal alkynes under mild conditions. This can be due to the existence of abundant nitrogen atoms and diverse porosity, which resulted in highly efficient catalytic activity and stability.  相似文献   

11.
With a view to energetic and (opto)electronic applications, tin (IV) oxide (SnO2) nanoparticles have been successfully prepared at the nanoscale by a templating approach based on the use of zinc (II) oxide (ZnO) as template. The procedure consisted in preparing a mixture of tin precursor and template, subsequently calcined at 650 °C under air to lead to the formation of a SnO2/ZnO composite material. Finally, the material was washed with an alkali solution to remove the template. The template/tin precursor mass ratio was varied in order to tailor the tin (IV) oxide material, especially with a view to main particle size. The resulting SnO2 nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption and electron microscopy. The tin (IV) oxide nanomaterial exhibited enhanced textural and physical surface properties (particle size, surface area, pore size) correlated to an increasing template/tin precursor mass ratio. For instance, from optimized experimental conditions, the specific surface area and pore volume were heightened twofold, reaching values of 49 m2/g and 0.32 cm3/g, respectively.  相似文献   

12.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. These template particles dispersed in aqueous solution have been used for the entrapment of ferrocene by a swelling process of methylene chloride emulsion droplets containing ferrocene within these particles, followed by evaporation of methylene chloride. The effects of CH2Cl2 volume and the [CH2Cl2]/[FeC10H10] (w/w) ratio on the size and size distribution of the swollen template particles were elucidated. Air-stable Fe3C nanoparticles embedded in amorphous carbon matrix (Fe3C/C) have been prepared by thermal decomposition of the ferrocene-swollen template polystyrene particles at 500 °C for 2 h in a sealed cell. Decomposition of these swollen template particles for 2 h at higher temperatures led to the formation of carbon nanotubes (CNTs) in addition to the Fe3C/C composite nanoparticles. The yield of the CNTs increased as the annealing temperature was raised. An opposite behavior was observed for the diameter of the formed CNTs. The size and size distribution, crystallinity, and magnetic properties of the different Fe3C/C composite nanoparticles have also been controlled by the annealing temperature.  相似文献   

13.
A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 °C) and exploited to enhance the catalytic activity of Pt/CeO2‐based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 °C. A protocol with reducing pulses at 250–400 °C was applied in a subsequent step for controlled Pt‐particle formation. Operando X‐ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H2>C3H6). This dynamic nature of Pt on ceria at such low temperatures (250–500 °C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst.  相似文献   

14.
Metal-organic framework (MOF)/graphite hybrid materials were prepared using an in situ process. Graphites with various chemical and physical features were used, and HKUST-1 was selected as the MOF component. The samples (parent materials and hybrid materials) were characterized by X-ray diffraction, nitrogen sorption, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Then they were tested as ammonia adsorbents in dynamic conditions. The results indicate that the functionalization of graphite is important to build the hybrid materials with synergistic properties. The lack of functional groups on graphite results in the formation of a simple physical mixture. Besides the surface chemistry of the graphitic component, the physical parameters (porosity and size of flakes) also seem to influence the formation of the hybrid materials. It is observed that the graphite particles disturb the formation of HKUST-1 and induce a different crystal morphology (more defects and increased surface roughness) than the one observed when MOF is formed in the absence of a substrate. The latter behavior causes less ammonia to be adsorbed on the hybrid materials than is expected for the simple physical mixture of HKUST-1 and graphite. The MOF structure collapses (in HKUST-1 and the hybrid materials) upon ammonia adsorption and leads to the formation of new species.  相似文献   

15.
This paper presents the behavior of ordered mesoporous carbon (OMC)-supported catalysts as anodes for direct methanol fuel cells (DMFC), fed with an aqueous methanol solution. OMC samples were prepared by the nanocasting method from a polymerized furan resin using mesoporous silica as a template. Pt and PtRu nanoparticles were supported on OMC with high dispersion, the particle size being 2.4 nm at PtRu loading of 15 wt.%. The resulting catalysts were analyzed using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry in three-electrode experiments and recording cell voltage vs. current density curves in practical DMFC. It was found that PtRu-catalyzed technical electrodes exhibited good activity towards methanol electrooxidation in half-cell experiments under fuel-cell-relevant conditions. Specifically, Pt85Ru15/OMC catalyst showed the highest catalytic enhancement compared to Pt/OMC for the steady-state electrooxidation of methanol at 60 °C and 0.5 V, by a factor of 22 in 2-M MeOH solution. DMFC single cells yielded an open-circuit voltage of 0.625 V at 60 °C. Polarization curves indicate that DMFC with OMC-supported Pt85Ru15 catalyst at the anode exhibited the best performance.  相似文献   

16.
The chlorination processes of fly ash and bauxite in the presence of carbon were studied by means of a gas-flow type DTA, X-ray analysis and SEM observation, and the reactivity of Al-compounds as their constituents was compared. In the case of fly ash, the exothermic peak due to the formation of AlCl3 (mainly) and FeCl3 appeared at about 790–920°C. The reactivity of Al estimated from the DTA peak temperature depended on the particle size, carbon content and preparation temperature of fly ash, and was much lower than that of bauxite. Fractional conversion of Al was about 60–70%, when fly ash (?300 mesh) was heated up to 900°C in Cl2 at 5°C min?1 of heating rate. In the case of bauxite, two exothermic peaks due to the chlorination of Fe and Al appeared at about 270 and 490°C, respectively. The chlorination of Al was completed at 550°C under the above conditions.  相似文献   

17.
Thermal behavior of highly crystalline ε-Fe2O3 nanoparticles of different apparent crystallite sizes was characterized using thermogravimetry, differential thermal analysis, and analysis of evolved gas by mass spectrometry. Phase composition of the samples was monitored ex situ by X-ray powder diffraction. The results show that the thermal stability of this metastable iron oxide polymorph decreases with increasing particle size. For the particle diameter of 19(2) nm, the transformation temperature was equal to 794(5) °C, while for 28(2) nm only 755(10) °C. Surface of the nanoparticles contained adsorbed water and carbon dioxide. Elimination of these species proceeds in two steps. Water is removed at temperatures below 200 °C and CO2 in the temperature range between 200 and 450 °C.  相似文献   

18.
Copper-based metal-organic framework (Cu3(BTC)2(H2O)3]nnH2OMeOH (HKUST-1) has been subjected to thermolysis under air atmosphere at different temperatures ranging from 100 to 300 °C. This treatment produces the partial removal of ligands, the generation of structural defects and additional porosity in a controlled way. The resulting defective materials denoted according to the literature as quasi-MOFs, were subsequently employed as heterogeneous catalysts in the one pot synthesis of N-benzylideneaniline from aniline and benzyl alcohol in open air as terminal oxidant at 70 °C under base- and dehydrating agent-free conditions. The Q-HKUST catalysts calcined at 240 °C (QH-240) was the most efficient in the series, promoting imine synthesis. Data from Knoevenagel condensation of malononitrile shows that in QH-240 the distances of Cu ions in HKUST-1 cavities are preserved, increasing the Knoevenagel activity, but a strong rearrangement takes place at 300 °C or above. The unsaturated copper active sites with simultaneous presence of micro- and mesopores in QH-240 are responsible for this excellent catalytic performance. The effective parameters on catalytic activity of QH-240 including deligandation temperature, the amount of catalyst, the ratio of reactants, and reaction temperature as well as the stability and recyclability of the catalyst were also investigated. The possible mechanism used by QH-240 follows alcohol aerobic oxidation and subsequent anaerobic condensation of aldehyde intermediate with aniline.  相似文献   

19.
Controlled synthesis of metal–organic framework (MOF)-based materials with multiple levels of porous structures across different length scales is of great interest in various applications but it still remains challenging. Most of the current strategies are time consuming and labor intensive, and not readily scaled-up. In this work, we introduce a straightforward one-pot fabrication strategy to prepare a robust and flexible hierarchically macro-meso-micro porous HKUST-1/polyvinylidene fluoride (PVDF) composite through solvent evaporation, in which MOF crystallization and polymer precipitation are combined together. The effect of the MOF precursor and the polymer initial amount on the morphology of the final composite was thoroughly studied. The interaction between the MOF and the polymer during the evaporation process is the key factor, which would limit the mobility of the polymer chains and cause instability in the MOF growth, thus endowing the composite with a hierarchically macro-meso-micro porous structure. This “all-in-one” porous structure could enhance the mass transport property of molecules within the composite. The obtained HKUST-1/PVDF composite showed an enhanced CO2 adsorption rate constant of 0.821 min−1 (298 K, 1 bar), which was 3.5 times higher than that of the pristine MOF. In addition, the composite showed an equivalent gas adsorption capacity under all tested pressures and greatly improved water stability.  相似文献   

20.
Access to high‐quality, easily dispersible carbon quantum dots (CQDs) is essential in order to fully exploit their desirable properties. Copolymers based on N‐acryloyl‐D ‐glucosamine and acrylic acid prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization are self‐assembled into micelle‐like nanoreactors. After a facile graphitization process (170 °C, atmospheric pressure), each micellar template is transformed into a CQD through a 1:1 copy process. These high‐quality CQDs (quantum yield=22 %) with tunable sizes (2–5 nm) are decorated by carboxylic acid moieties and can be spontaneously redispersed in water and polar organic solvents. This preparation method renders the mass production of multifunctional CQDs possible. To demonstrate the versatility of this approach, CQDs hybridized TiO2 nanoparticles with enhanced photocatalytic activity under visible‐light have been prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号