首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vascular response of human skin to 300 nm (UV-B) and 254 nm (UV-C) ultraviolet radiation was assessed using the reflectance measurement of erythema and the technique of laser Doppler velocimetry. For both wavelengths, the increase in measured Doppler blood flux varied with the increase in erythema in a quadratic manner predicted by a simple model based on the principles of fluid mechanics. This suggests that the mean red blood cell velocity increases significantly in areas of UV-B and UV-C erythema. No qualitative difference in response to these two wavelengths was demonstrated, suggesting that the same blood vessels are involved in the causation of both UV-B and UV-C erythema.  相似文献   

2.
SPECTRAL QUALITY OF TWO FLUORESCENT UV SOURCES DURING LONG-TERM USE   总被引:1,自引:0,他引:1  
The characteristics of a fluorescent ultraviolet (UV) lamp (UVB-313), UV-B transmitting cellulose diacetate (CA) and UV-B absorbing polyester (PE) films were determined during actual use. Although lamp emission was stable between 70 and 386 h of burn time (longer times were not investigated), the absorbance of UV-B and UV-A radiation by CA and PE films, respectively, increased with time when wrapped around lamps. As a result, the irradiance of lamp/filter combinations decreased steadily (even when CA films were presolarized for 10 h), making it necessary to compensate by adjusting the height of the lamp bank or by changing filters frequently. Note that corrective action is required for UV-A controls (PE films) as well as UV-B experimental treatments (CA films). Changing filters is preferable, since aging of CA filters caused shifts in the ratio of UV-B to UV-A. However, in spite of these shifts, the normalized spectrum of weighted biologically effective UV-B radiation did not change to a large extent.  相似文献   

3.
Abstract— The increase in UV-B radiation(290–320 nm) penetrating to the earth's surface as a result of the chemical depletion of the stratospheric ozone layer is an important environmental concern. In most studies using artificial UV-B sources, the determination of enhanced UV-B radiation effects on plants relies on equivalent UV-A radiation(320–400 nm) from the experimental UV-B fluorescent lamp source, filtered with either cellulose diacetate (CA) to create UV-B treatments, or with type S Mylar or polyester (PE) to create controls (no UV-B). The spectral irradiance in the UV-A was measured in the dark below lamps at two daily UV-B irradiance levels (14.1 and 10.7 W m-2) with CA and PE at two ages. Highly significant differences in UV-A radiation (P 0.01) were measured below the treatment/control pairs at both fluence rates and filter ages. Filter aging was observed, which reduced the UV-A irradiance, especially for PE. The total daily ambient UV-A irradiance was also determined in the glasshouse at three seasons: the fall equinox, summer and winter, from which the total daily UV-A (lamp + ambient) irradiances were calculated. The addition of low to moderate ambient irradiance removed the treatment/control differences in the longwave UV-A(350–400 nm); however, the treatment/contro1 differences remained in the shortwave UV-A(320–350 nm), which was restricted by the glass, and in the total UV-A. The treatment/control differences persisted in the shortwave UV-A for the higher irradiance level, even under high summer ambient light. Also, spectral ratios (UVB:UV-A and shortwave: longwave UV-A) for all treatment groups decreased as the ambient UV-A radiation increased. Therefore, a range of experimental conditions exist where PE-covered lamps do not provide adequate control for UV-A irradiance, relative to the CA treatment, for glasshouse/growth chamber experiments. Potential complications in the interpretation of plant response exist for UV-B experiments conducted under low ambient light conditions (e.g. growth chambers; glasshouse in winter) or high daily UV-B irradiances (e.g. 14 kJ m-2) for those plant responses that are sensitive to UV-A radiation.  相似文献   

4.
Abstract— The Living Skin Equivalent (LSE™) is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. These features suggested its feasibility as an in vitro skin model for studying the protective effects of sunscreens. Using the thiazolyl blue (MTT) conversion assay as a measure of mitochondrial function, the extent of cytotoxicity induced by various doses of UV-R (280–400 nm) or UV-A (320–400 nm) was evaluated in the LSE. The doses of UV radiation that caused 50% reductions in MTT conversion (UV-R50 or UV-A50) in different lots of LSE were 0.053 ± 0.021 J/cm2 (n = 29) and 11.6 ± 4.9 J/cm2 (n = 17) for UV-R and UV-A, respectively. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-α, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of U V radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A.  相似文献   

5.
The effect of solar irradiation on the percentage of motile cells, their average speed and their phototactic orientation to white actinic light was studied in the flagellate, Euglena gracilis. Unfiltered solar radiation in midsummer during mid-day at a location near Lisboa, Portugal, was found to impair motility within 2 h. This effect is exclusively due to the UV-B component of the radiation and not due to UV-A, visible light or a temperature increase. Likewise, phototactic orientation was drastically impaired. Reduction of the solar UV-B irradiation by insertion of an ozone-Hooded plexiglass cuvette partially reduced the inhibition and covering the cuvettes with glass prevented any decrease in motility and photoorientation. Similar results were found with artificial irradiation (Xe lamps). After inoculation the motility of the population follows an optimum curve (optimum at 8 days). Also, the UV-B effect on motility was smallest after about one week and increased for younger and older cultures.  相似文献   

6.
Abstract— Comparison of spectroradiometric and meter measurements of a series of ultraviolet radiation sources indicates that a wide divergence between readings can occur. We found that with a xenon are filtered as a solar simulator producing UV-A (320–400 nm) and UV-B (290–320 nm) radiation, the meter can either over-or underestimate the emission of the source when different cutoff filters are used. The most severe discrepancy appears with the UV-B meter reading, although the UV-A reading can also be problematic. Meters should be calibrated against the specific sources they will be used to measure.  相似文献   

7.
We previously reported that approximately 10% of V79 Chinese hamster fibroblast populations clonally derived from single cells immediately after irradiation with either ultraviolet B (UV-B, 290-320 nm, mainly 311 nm) or ultraviolet A (UV-A, 320-400 nm, mainly 350-390 nm) radiation exhibit genomic instability. The instability is revealed by relatively high mutation frequencies in the hypoxanthine phosphoribosyl transferase (hprt) gene up to 23 cell generations after irradiation. These delayed mutant clones exhibited higher levels of oxidative stress than normal cells. Therefore, persistently increased oxidative stress has been proposed as a mechanism for UV-induced genomic instability. This study investigates whether this mechanism is reflected in the deletion spectrum of delayed mutant clones. Eighty-eight percent of the delayed mutant clones derived from UV-A-irradiated populations were found to have total deletion of the hprt gene. Correspondingly, 81% of UV-A-induced early mutations (i.e. detected shortly after irradiation) also had total deletions. Among delayed UV-B-induced mutant clones, 23% had total deletions and 8% had deletion of one exon, whereas all early UV-B events were either point mutations or small deletions or insertions. In conclusion, the multiplex polymerase chain reaction deletion screen showed that there were explicit differences in the occurrence of large gene alterations between early and delayed mutations induced by UV-B radiation. For UV-A radiation the deletion spectra were similar for delayed and early mutations. UV-A radiation is, in contrast to UV-B radiation, only weakly absorbed by DNA and probably induces mutation almost solely via production of reactive oxygen species. Therefore, the present results support the hypothesis that persistent increase in oxidative stress is involved in the mechanism of UV-induced genomic instability.  相似文献   

8.
9.
The effects of ultraviolet radiation (UV-A: 320-400 nm and UV-B: 280-320 nm) and methyl viologen (MV) single or combined exposure, on the cell growth, viability and morphology of two strains of the unicellular flagellate Euglena gracilis, using the Z strain as a plant model and the achlorophyllous mutant SMZ strain as an animal model were investigated. Cell growth was not affected by MV only, whereas UV-A or UV-B single and combined exposure with MV inhibited the cell growth or decreased the viability. The SMZ strain had a higher number of abnormal cells than the Z strain after the third dose of UV-B was delivered simultaneously with MV. The abnormal cell number decreased when E. gracilis SMZ cells were preincubated with 100 microM rutin prior to the UV-B and MV exposure. There were higher abnormal cell numbers with groups exposed to UV rather than MV single exposure. Combined exposure to UV-B and 200 microM MV induced the highest levels of TBARS in both strains, and with the supplementation of rutin these high levels were suppressed. These results suggest that UV-A or UV-B irradiation alone or combined with MV cause considerable oxidative damage in E. gracilis cells, and rutin supplementation may suppress their adverse effects.  相似文献   

10.
The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 x 10(3) kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.  相似文献   

11.
The aim of the present study is to evaluate the occurrence of oxidative stress in the cladoceran Daphnia longispina exposed to UV-A and UV-B radiation. The activity of antioxidant enzymes and lipid peroxidation markers is investigated and the protective action of ascorbic acid determined. Results show differences in the lethality radioinduced by UV-A and UV-B. Both UV-A and UV-B exposure cause an important increase in malonaldehyde (MDA) concentration and catalase activity. Ascorbic acid addition reduces the MDA concentration, indicating that the oxidative stress caused by either UV-A or UV-B radiation can be controlled by antioxidants. The increase of the antioxidant enzymes may be a response mechanism to oxidative stress.  相似文献   

12.
Synthesis of extracellular matrix (ECM) proteins and their degradation by matrix metalloproteinases (MMP) are part of the dermal remodeling resulting from chronic exposure of skin to ultraviolet radiation (UVR). We have compared two alternative mechanisms for these responses, namely, a direct mechanism in which UV-B or UV-A is absorbed by fibroblasts and an indirect mechanism in which cytokines, produced in skin in response to UVR, stimulate production of the ECM proteins and MMP. These studies were carried out on human dermal fibroblasts grown in contracted, free-floating 9 day old collagen gels as a dermal equivalent. Synthesis of tropoelastin, collagen, fibrillin, MMP-1, -2, -3 and -9 and tissue inhibitors of metalloproteinases (TIMP)-1 and -2 were measured. Tropoelastin, collagen and fibrillin levels were stable between days 4 and 10, and MMP and TIMP decreased by day 10. Neither UV-B (2.5-50 mJ/cm2) nor UV-A (2-12 J/cm2) altered synthesis of ECM proteins, but UV-A increased MMP-1 and -3 production. Tropoelastin synthesis increased in response to transforming growth factor-beta1 (5 ng/mL) treatment. Both interleukin-1beta and tumor necrosis factor-alpha (10 ng/mL) decreased fibrillin messenger RNA levels but increased MMP-1, -3 and -9 synthesis markedly. Collagen synthesis was not modulated by UV-B, UV-A or cytokine treatment. These results indicate that certain cytokines may have greater effects on production of ECM proteins and MMP than absorption of UV-B and UV-A by fibroblasts grown in dermal equivalents and suggest that the former pathway may play a role in the dermal remodeling in photoaged skin.  相似文献   

13.
Abstract—Plant response to UV-B (0.290–0.320 μm) irradiation in controlled environments has been difficult to assess, possibly because plants also respond to UV-A (0.320–0.400 μm) and visible radiation. Photosynthetic dysfunction is often reported, but effects on photosynthetic pigments have been equivocal. Because UV-A/blue radiation is involved in pigment synthesis, the experimental UV-A irradiation was controlled and this study was conducted under high ambient photosynthetic photon flux (mid-day PPF > 1400 pmol m –2 s–1). Two biologically effective UV-B irradiances (10.7 and 14.1 kJ m-2 day-I) were utilized and the UV-A irradiances were matched in controls (˜5 and 9 kJ m-2 day-1). Normal and two mutant pigment isolines (chlorophyll-deficient, flavonoid-deficient) of soybean cultivar Clark were utilized for comparisons. Many pigmedgrowth variables exhibited a statistical interaction between spectral quality and quantity. UV-A/blue photoregulation was demonstrated in the UV-A controls. The pigmentlgrowth pattern observed at the lower UV-B irradiance was interpreted as a photosystem II response similar to shade adaptation, suggesting phytochrome involvement in UV-B irradiation responses. On the other hand, two variables most commonly observed to manifest UV-B-induced effects—decreased photosynthesis and increased leaf flavonoid content—exhibited no interactions due to UV exposure or spectral quality. In general, the observed response patterns indicated either moderation of UV-B-induced responses by UV-A/blue radiation, or coaction between them, and provides an explanation for the common failure to demonstrate fluence-related responses in UV-B experiments.  相似文献   

14.
We carried out experiments during an expedition (14 August to 14 September, 2007) that covered up to 250,000 km(2) to investigate the effects of solar UV radiation (UVR, 280-400 nm) on the photosynthetic carbon fixation of tropical phytoplankton assemblages in surface seawater of the South China Sea. From coastal to pelagic surface seawaters, UV-B (280-315 nm) caused similar inhibition, while UV-A (315-400 nm) induced photosynthetic inhibition increased from coastal to offshore waters. UV-B resulted in an inhibition by up to 27% and UV-A by up to 29%. Under reduced levels of solar radiation with heavy overcast, UV-A resulted in enhanced photosynthetic carbon fixation by up to 25% in coastal waters where microplankton was abundant. However, such a positive impact was not observed in the offshore waters where piconanoplankton was more abundant. The daily integrated inhibition of UV-A reached 4.3% and 13.2%, and that of UV-B reached 16.5% and 13.5%, in the coastal and offshore waters, respectively.  相似文献   

15.
Evidence is mounting that UV-B and UV-A radiation affect skin differently in responses as diverse as erythema and elastosis. We found in this study that collagen metabolism was also differentially affected. Albino hairless mice were irradiated with two UV-A sources: (1) UVASUN 3000 (340-400 nm) for cumulative exposures of 4000 and 8000 J/cm2; (2) a xenon solar simulator filtered to provide full spectrum UV-A (320-400 nm) and long wavelength UV-A (335-400 nm) for cumulative exposures of 3000 and 4000 J/cm2 respectively. Collagen was isolated from other skin proteins by acid extraction, pepsin digestion and salt precipitation. Collagen types I and III were separated by interrupted gel electrophoresis. Ultraviolet-A rendered the collagen highly resistant to pepsin digestion. In age-matched controls only 16-18% of the total collagen remained insoluble, whereas in long wavelength UV-A-irradiated skins the insoluble fraction was as high as 87%. A dose response was noted at 4000 and 8000 J/cm2 as delivered by the UVASUN. Recovery of collagen from the pepsin soluble fraction was low in all UV-A groups and the amount of type III so small that determination of ratios of type III to I collagen was unreliable. These results suggest that chronic UV-A radiation may increase cross-linking of dermal collagen.  相似文献   

16.
Ultraviolet (UV) radiation monitoring films were prepared from solutions of polymers (polyvinyl, alcohol, PVA, or polyvinyl butyral, PVB), containing triphenyl tetrazolium chloride dye (TTC). These films have a pronounced response to the main UV radiation spectral regions [UV-A (400–320 nm), UV-B (320–280 nm), and UV-C (280–180 nm)] showing different sensitivities. PVA/TTC film has its maximum sensitivity in the UV-A region, while PVB/TTC film has its maximum sensitivity in the UV-C region. Both films have almost the same sensitivity in the UV-B region. The radiation-induced colour change is analysed spectrophotometrically at the maximum of the visible absorption band peaking at 492 nm wavelength. The measurement uncertainty of estimating ultraviolet radiation energy incident per unit area on the films is found to be about 3.5% (1 σ). The study of the effect of radiance exposure, incident wavelength, and storage conditions have been carried out to characterise the use of these films for actinometric monitoring artificial ultraviolet radiation sources which are used for medical and industrial applications.  相似文献   

17.
Previous studies have shown that natural killer (NK) cell activity was suppressed in volunteer subjects exposed to ultraviolet radiation (UVR) from solarium lamps. The present studies were carried out to determine that spectrum of UVR responsible for suppression of NK activity and to develop in vitro methods to analyze the effectivenes of sunscreen agents in prevention of UVR-mediated suppression of NK activity and other aspects of immune function. UVR from a xenon are lamp source was used to irradiate peripheral blood lymphocytes (PBL) in wells of tissue culture flasks, and transmission interference filters were used to eliminate UVR of particular wavelengths. The results indicated that UVR from this source inhibited NK activity of PBL in a dose-dependent manner with a 50% inhibitory dose of 5.5 mJ/cm2 when unfiltered and 29.6 mJ/cm2 when diluted through cellulose acetate, which gave a UV spectrum similar to that in solar radiation. Equivalent suppression of NK activity was mediated by UV-A (UVR > 315 nm) at dose levels of 4.2 J/cm2, which was approximately 140 times greater than the amount of UV-B (UVR > 315 nm) needed to suppress NK activity. Similar dose-response curves were seen for inhibition of mitogenic responses to phytohemagglutinin except that the latter appeared less sensitive than NK to inhibition by UV-A. These studies suggest that whe the greater proportion of UV-A in solar radiation adn its greater penetration into skin is taken into account, UV-A may have equivalent or greater direct immunosuppressive effects than UV-B. The mechanisms of their immunosuppressive effects may, however, differ. The in vitro system described here would appear to provide a simple test system for further analysis of UVR-indued imunosuppression.  相似文献   

18.
The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280-320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR.  相似文献   

19.
The photoprotector role of pigment dispersion in the melanophores of the crab, Chasmagnathus granulata, against DNA and oxidative damages caused by UV-A and UV-B was investigated. Intact and eyestalkless crabs were used. In eyestalkless crabs, the dorsal epidermis of the cephalothorax (dispersed melanophores) and the epidermis of pereiopods (aggregated melanophores) were analyzed. Intact crabs showed only dispersed melanophores in the two epidermis. Antioxidant enzymes activity and lipoperoxidation content were analyzed after UV-A (2.5 J/cm2) or UV-B (8.6 J/cm2) irradiation. DNA damage was analyzed by single cell electrophoresis (comet) assay, after exposure to UV-B (8.6 J/cm2). UV-A radiation increased the glutatione-S-transferase activity in the pereiopods epidermis of eyestalkless crabs (P<0.05). UV-B radiation induced DNA damage in the dorsal epidermis of eyestalkless crabs (P<0.05). In pereiopod epidermis of eyestalkless crabs, there was no significant difference between control and UV-B-exposed crabs. In the pereiopods epidermis of eyestalkless, the control group showed higher scores of DNA damage and approximately 50% of cellular viability. Because in eyestalkless and irradiated crabs the cellular viability was approximately 5%, it was not possible to observe nuclei for determination of DNA damage. The findings show that melanophores can play a role in the defense against harmful effects of a momentary exposure to UV radiation.  相似文献   

20.
The mechanisms that cause skin wrinkling in response to chronic exposure to sunlight are unknown. We investigated the possibility that wrinkling of Skh-1 hairless mice is associated with an ultraviolet (UV) radiation-induced immunologic alteration. Exposing Skh-1 hairless mice to a regimen of nonerythemal UV-B (290-320 nm) radiation induced skin wrinkles after 6-7 weeks. Concomitant treatment with cyclosporin A decreased the time to the onset of wrinkles to approximately 4 weeks. Exposing HRS/J hairless mice or athymic nude mice to a similar nonerythemal UV-B radiation regimen for 10 weeks failed to induce skin wrinkles. Concomitant administration of cyclosporin A and UV-B radiation for 7 weeks to HRS/J hairless mice induced no skin wrinkles. Ultraviolet-B or UV-B plus cyclosporin A exposure caused increased immunohistochemical staining for Ia and F4/80 antigens in the upper dermis of tissue from Skh-1 mice, as compared to controls. Treating Skh-1 mice with UV-B radiation plus cyclosporin A was also associated with a large increase in the number of CD3+ cells in the dermis. These staining patterns were absent in similarly treated HRS/J hairless mice. Dermal mast cell numbers in Skh-1 mice were 2-3-fold higher than in HRS/J, athymic nude or NSA mice. Treatment with cyclosporin A increased Skh-1 dermal mast cell numbers approximately 2-fold but had no effect on the dermal mast cell numbers in HRS/J or NSA mice. Based on these findings we postulate that UV-B light and cyclosporin A exacerbate an immunological condition in Skh-1 mice, one consequence of which is manifested as skin wrinkles. Thus, the induction of skin wrinkles in this mouse strain may have no relevance to the wrinkles observed in human skin after chronic exposure to sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号