首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-insoluble amines (dissolved in an organic solvent/organic solvent mixture) are often used for the extractive recovery of carboxylic acids from aqueous phases. The basic design of the extraction process requires a thermodynamic framework that should be able to describe the liquid–liquid phase equilibrium not only in the phase forming systems (water + carboxylic acid + organic solvent + reactive extractant), but also when the aqueous feed phase contains additionally small amounts of strong electrolytes. Even small amounts of strong electrolytes might considerably reduce the recovery rate. In part I of this series such a model was presented and discussed for methyl isobutyl ketone as organic solvent and tri-n-octylamine (TnOA) as the chemical extractant. The present part II is to demonstrate that the procedures/methods described for methyl isobutyl ketone as organic solvent can be applied also for other organic solvents. By way of example, here toluene is that organic solvent. New experimental results are reported for the influence of sodium chloride, sodium nitrate, sodium sulfate, sodium acetate and hydrochloric acid on the partitioning of acetic acid to coexisting aqueous/organic liquid phases of the system (water + toluene + tri-n-octylamine) at 25 °C. An extension/adaptation of the previously published thermodynamic framework is successfully applied to describe/predict the new experimental liquid–liquid phase equilibrium data.  相似文献   

2.
Phase equilibrium data have been measured for the ternary system hyperbranched polyglycerol + methanol + carbon dioxide at temperatures of 313–450 K and pressures up to 13.5 MPa. Phase changes were determined according to a synthetic method using the Cailletet setup. At elevated temperatures the system shows a liquid–liquid–vapor region with lower solution temperatures. Besides the vapor–liquid and liquid–liquid equilibria, the vapor–liquid to vapor–liquid–liquid and vapor–liquid–liquid to liquid–liquid phase boundaries are reported at different polymer molar masses and can serve as test sets for thermodynamic models. A distinct influence of the polymer molar mass on the vapor–liquid equilibrium can be noticed and indicates the existence of structural effects due to the polymer branching. Modeling the systems with the PCP-SAFT equation of state confirms these findings.  相似文献   

3.
In this paper, we present the results of our study of the phase equilibria for two quaternary systems: water + 1-propanol/2-propanol + potassium chloride (KCl) + cesium chloride (CsCl) at 298.1 ± 0.1 K. We also produced the binodal curves and tie-lines at different KCl/CsCl mass-fraction ratios, and produced integrated phase diagrams for the quaternary systems. We also discuss the solvation abilities of KCl and CsCl, and the effect of the polarity of the organic solvent on the liquid–liquid equilibrium. We compared the experimental tie-lines derived for the quaternary systems with values predicated by modifying the Eisen–Joffe equation. The model produced satisfactory results.  相似文献   

4.
In this work, the competing effects of sodium chloride (NaCl) and tetrahydrofuran (THF) on carbon dioxide hydrate formation are investigated through phase equilibrium measurements. The phase behaviour in the hydrate forming region for the binary system carbon dioxide–water, the ternary systems carbon dioxide–tetrahydrofuran–water and ternary carbon dioxide–sodium chloride–water and, in addition, the quaternary system carbon dioxide–tetrahydrofuran–water–sodium chloride are determined experimentally, using a Cailletet apparatus. All measurements are made in a temperature and pressure region of 275–290 K and 0.5–7.0 MPa, respectively. In these ranges, three different hydrate equilibrium curves are measured namely: H-LW-V, H-LW-LV-V and H-LW-LV. The formation of an organic-rich liquid phase in the systems due to a liquid–liquid two-phase split between water and tetrahydrofuran when pressurized with carbon dioxide causes the occurrence of an upper quadruple point (Q2) to evolve into a four-phase H-LW-LV-V equilibrium line. The presence of sodium chloride in the quaternary system enhances the split between the two liquids due to the salting-out effect. It was found that the hydrate promoting effect of tetrahydrofuran is able to suppress the inhibiting effect of sodium chloride especially at lower concentration of sodium chloride.  相似文献   

5.
An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer has been used to determine vapor–liquid (VLE) and vapor–liquid–liquid (VLLE) equilibria. Consistent data have been obtained for the ternary water + ethanol + p-xylene system at 101.3 kPa for temperatures in the range of 351.16–365.40 K. Experimental results have been used to check the accuracy of the UNIFAC, UNIQUAC and NRTL models in the liquid–liquid region of importance in the dehydration of ethanol by azeotropic distillation.  相似文献   

6.
Dispersive liquid–liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid–liquid microextraction (DLLME) technique with few solvent requirements (13 μL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885–2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1–9.7% for reservoir water; 5.6–8.9% for river water) and high sensitivity (limits of detection: 0.8–2.5 ng/L for reservoir water; 0.4–1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.  相似文献   

7.
Experimental results are presented for the liquid–liquid equilibrium of a ternary system (N-vinylpyrrolidone + sodium sulfate + water) and three quaternary systems composed of (N-vinylpyrrolidone + poly(vinylpyrrolidone) + sodium sulfate + water) at 25 °C. The quaternary systems differ in the number averaged molecular mass of the poly(vinylpyrrolidones). That molecular mass was between about 4 000 and 140 000. The experimental results are described with a semi-empirical model (VERS model) for the excess Gibbs energy.  相似文献   

8.
Experimental liquid–liquid phase diagrams are presented for the multicomponent systems isooctane–benzene–(80 mass% methanol + 20 mass% water)–5 mass% isobutyl alcohol (2-methyl-1-propanol) and isooctane–benzene–(80 mass% methanol + 20 mass% water)–15 mass% isobutyl alcohol, at 298.15 K. The density and interfacial tension of conjugate phases of concentration located in the isothermal binodal have been determined at 298.15 K for the partially miscible systems: isooctane–benzene–methanol, isooctane–benzene–(80 mass% methanol + 20 mass% water), isooctane–benzene–(80 mass% methanol + 20 mass% water)–5 mass% isobutyl alcohol, and isooctane–benzene–(80 mass% methanol + 20 mass% water)–15 mass% isobutyl alcohol. The experimental tie-line data define the binodal or coexistence curve of the two studied multicomponent systems and depending on the initial isobutyl alcohol concentration the liquid–liquid phase diagram is either of type II, with low alcohol concentration, or type I, with high concentration of alcohol, which is a clear indication that the solubility of the partially miscible systems is greatly enhanced via the co-solvency phenomenon. It is observed that both the density of each conjugate phase and the interfacial tension of each tie-line are valuable indicators of the degree of solubility of the multicomponent systems. Furthermore the experimental tie-lines data were correlated with the NRTL and UNIQUAC solution models with satisfactory quantitative results.  相似文献   

9.
Alkyl alkylphosphonic acids (AAPAs) are important environmental markers of nerve agents. A simple hollow fiber-based liquid–liquid–liquid microextraction (HFLLLME) technique has been developed to enrich the AAPAs from water. AAPAs were extracted from acidified aqueous phase to organic phase present in pores of the hollow fiber, and then back extracted into the alkaline acceptor phase present in the lumen of the hollow fiber. Variables affecting the HFLLLME process were optimized using a Plackett–Burman design and a Doehlert design. Optimal experimental conditions were: organic solvent, 1-octanol; pH of acceptor phase, 14; extraction time, 60 min; pH of donor phase, 1; and NaCl concentration, 10% (w/v). Depending upon the alkyl substituent, lower limits of detection varied from 0.1 to 100 ng mL−1 (S/N ≥ 5). Repeatability of the method was observed with relative standard deviation of 1.49–9.83% (n = 3). After validation, the method was applied to detect AAPAs present in the water sample provided by the Organization for Prohibition of Chemical Weapons (OPCW) during the 23rd official proficiency test. The added advantage of this method is that several successive extractions of AAPAs from the same water sample can be performed.  相似文献   

10.
Partial miscibility in binary systems {N-methylpiperidine–water} and {2-methylpiperidine–water} was studied. The temperatures of liquid–liquid separation were determined as function of composition using both calorimetric technique and phase equilibrium cell. The densities of {amine–water} mixtures were determined in the domain of total miscibility at temperatures between 288 K and 338 K. Excess molar volumes were derived from experimental density data and fit to a Redlich–Kister polynomial.  相似文献   

11.
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3.  相似文献   

12.
Liquid–liquid equilibria data of the [Bmim]BF4 + fructose + water system were determined at 298.15, 308.15, 31815 K. It was found that the liquid–liquid equilibria can be formed over a wide component range and the effect of the temperature on the phase equilibria is obvious within the fructose concentration changing from 3 to 40%. The binodal curves were correlated using a five-parameter equation, and the tie lines were fitted the Othmer–Tobias and Bancroft correlations. Correlation coefficients for the equations exceeded 0.99.  相似文献   

13.
A simple, rapid and efficient dispersive liquid–liquid microextraction based on the solidification of floating organic drop (DLLME–SFO) method, followed by inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for the simultaneous preconcentration and determination of heavy metals in water samples. One variable at a time method was applied to select the type of extraction and disperser solvents. Then, an orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters on the extraction efficiency. Under the best experimental conditions (extraction solvent: 140 μL of 1-undecanol; disperser solvent: 2.0 mL of acetone; ligand to metal mole ratio: 20; pH: 6 and without salt addition), the enhancement factor ranged from 57 to 96. The calibration graphs were linear in the range of 0.5–250 μg L−1 for Mn, 1.25–250 μg L−1 for Cr, Co and Cu with correlation coefficient (r) better than 0.990. The detection limits were between 0.1 and 0.3 μg L−1. Finally, the developed method was successfully applied to extraction and determination of the mentioned metal ions in the tap, sea and mineral water samples and satisfactory results were obtained.  相似文献   

14.
A novel microextraction technique, air-assisted liquid–liquid microextraction (AALLME), which is a new version of dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction and preconcentration of phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DNBP), and di-2-ethylhexyl phthalate (DEHP), from aqueous samples prior to gas chromatography–flame ionization detection (GC–FID) analysis. In this method, much less volume of an organic solvent is used as extraction solvent in the absence of a disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by GC–FID. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12–1.15 and 0.85–4 ng mL−1, respectively. Enrichment factors (EFs) and extraction recoveries (ERs) were in the ranges of 889–1022 and 89–102%, respectively. The relative standard deviations (RSDs) for the extraction of 100 ng mL−1 and 500 ng mL−1 of each phthalate ester were less than 4% for intra-day (n = 6) and inter-days (n = 4) precision. Finally some aqueous samples were successfully analyzed using the proposed method and three analytes, DIBP, DNBP and DEHP, were determined in them at ng mL−1 level.  相似文献   

15.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

16.
A novel liquid–liquid–solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006–0.02 μg L−1), satisfactory recoveries and good repeatability for real sample (RSD 1.2–9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines in complex aqueous samples.  相似文献   

17.
A new concept of liquid–liquid–liquid microextraction (LLLME) was introduced based on applying two immiscible organic solvents in lumen and wall pores of hollow fiber (HF). With this methodology, analytes of interest can be extracted from aqueous sample, into a thin layer of organic solvent (dodecane) sustained in the pores of a porous hollow fiber, and further into a μL volume of organic acceptor (acetonitrile or methanol) located inside the lumen of the hollow fiber. Some chlorophenols (CPs) were selected as model compounds for developing and evaluating of the method performance. The analysis was performed by gas chromatography–electron capture detection (GC–ECD) without derivatization. The factors affecting the HF-LLLME of target compounds were investigated and the optimal extraction conditions were established. Under the optimum conditions, preconcentration factors in a range of 208–895 were obtained. The performance of the proposed method was studied in terms of linear dynamic ranges (LDRs from 0.02 to 100 ng mL−1), linearity (R2 ≥ 0.995), precision (RSD % ≤ 8.1) and limits of detection (LODs in the range of 0.006–0.2 ng mL−1). In addition to preconcentration, HF-LLLME also served as a technique for sample clean-up.  相似文献   

18.
In this work, we present the modeling of three-phase vapor–liquid–liquid equilibria for a mixture of natural gas (Hogback gas) containing high concentrations in nitrogen (51.8 mol%) with the SRK and PC-SAFT equations of state. The interest of studying this mixture is due to the experimental evidence of the occurrence of multiple equilibrium liquid phases for this mixture over certain ranges of temperature and pressure. The calculation of the multiphase equilibria was carried out by using an efficient numerical procedure based on the minimization of the system Gibbs energy and thermodynamic stability tests to find the most stable state of the system. The results of the calculated vapor–liquid–liquid equilibria (VLLE) show that the PC-SAFT equation of state predicts satisfactorily the phase behavior that experimentally exhibits this mixture, whereas the SRK equation of state predicts a three-phase region wider than the experimentally observed. The two-phase boundary for this mixture was also calculated through flash calculations, and the results showed that this mixture does not present any gas-liquid critical point.  相似文献   

19.
Liquid–liquid equilibria and tie-lines for the ternary (water + 1-propanol + α-pinene, β-pinene or limonene) and (water + 1-butanol + α-pinene, β-pinene or limonene) mixtures have been measured at T = 298.15 K. The experimental ternary liquid–liquid equilibrium data have been successfully represented using the additional ternary parameters as well as the binary parameters in terms of the extended and modified UNIQUAC models.  相似文献   

20.
In the present communication, we report the studies concerning liquid–liquid–solid equilibria for the ternary system sodium thiosulphate (Na2S2O3) + ethanol + water at ambient pressure and at room temperature (303 ± 2 K). The solubility data of Na2S2O3 are reported for solutions in water, ethanol and solutions of varying concentrations of ethanol in water. The phase diagram for the said system is developed, described and compared with similar system K2CO3 + methanol + water. These results have been explained in terms of structural properties of aqueous ethanol solutions and further discussed in terms of the effect of ions to cause phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号