首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An organic solvent-soluble membrane filter (MF) is proposed for the simple and rapid reconcentration with subsequent spectrophotometric determination of trace levels of iron (II) in water. Iron (II) is collected on a nitrocellulose membrane filter as ion associate of an anionic complex, which is formed by iron (II) and Ferrozine and a cation-surfactant. The ion-pair compound and the MF can be dissolved in small volumes of 2-ethoxyethanol and the absorbance of the resulting solution is measured at 560 nm against a reagent blank with molar absorptivity of 4.01 × 104 L mol–1 cm–1. Beer’s law is obeyed over the concentration range 0–10 μg L–1 of iron (II) in water and the detection limit is 0.03 μg L–1 with a 50-fold enrichment factor. The proposed method can satisfactorily be applied to the determination of iron (II) in natural water and sea water.  相似文献   

2.
A capillary electrophoretic method for the determination of EDTA has been developed. EDTA was converted to Ni(II)-EDTA prior to separation, separated from Fe(III)-EDTA, thiosulphate, bromide and polythionates using a fused silica capillary (57 cm × 75 μm I.D.) filled with a borate buffer (50 mmol L–1; pH 8.5; applied voltage, 30 kV) and detected at 214 nm. The separation time is about 6 min. The detection limit achieved is 2 × 10–6 mol L–1 for EDTA. This method was applied for the determination of free EDTA in used fixing solutions. Received: 27 February 1998 / Revised: 28 April 1998 / Accepted: 20 May 1998  相似文献   

3.
A capillary electrophoretic method for the determination of EDTA has been developed. EDTA was converted to Ni(II)-EDTA prior to separation, separated from Fe(III)-EDTA, thiosulphate, bromide and polythionates using a fused silica capillary (57 cm × 75 μm I.D.) filled with a borate buffer (50 mmol L–1; pH 8.5; applied voltage, 30 kV) and detected at 214 nm. The separation time is about 6 min. The detection limit achieved is 2 × 10–6 mol L–1 for EDTA. This method was applied for the determination of free EDTA in used fixing solutions. Received: 27 February 1998 / Revised: 28 April 1998 / Accepted: 20 May 1998  相似文献   

4.
A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).  相似文献   

5.
A simple and very sensitive method has been developed for the determination of ascorbic acid based on the oxidation of ascorbic acid to dehydroascorbic acid by iron(III), followed by a complexation of iron(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol(Br-PADAP). The iron(II) complex is formed immediately, with absorption maxima at 560 and 748 nm and a molar absorptivity of 1.31 × 105 l mole–1cm–1 and 5.69 × 104 l mole–1cm–1, respectively. The ascorbic acid determination is possible with a linear range up to 2.4 μg ml–1, a calibration sensitivity of 0.744 ml μg–1 at 560 nm and 0.323 ml μg–1 at 748 nm, and a detection limit of 15 ng ml–1 and 44 ng ml–1, respectively. The procedure was used for the ascorbic acid determination in several fruit juices and pharmaceutical formulations. The results demonstrated a good precision (R.S.D. < 1%) and are in agreement with those obtained with others methods. The Br-PADAP method proposed is six times more sensitive than the method using the iron(II)-1,10-phenanthroline system. Received: 7 May 1996 / Revised: 1 July 1996 / Accepted: 8 August 1996  相似文献   

6.
A method for the determination of cyanide in blood plasma by differential pulse polarography (DPP) is described without a drastic acidification of the sample. Cyanide was determined as tetracyanonickelate(II)-anion complex after a microwave-acid assisted cleanup and a selective complex extraction in a polyethylene methylene blue (PE-MB) impregnated column. The cyano complex was eluted from the column with water/acetonitrile and determined by pulse-polarography at –380 mV (Ag/AgCl). The linear range of calibration was obtained from 1.2 to 9.6 μg of cyanide with r = 0.99 and RSD = 9% of 1.2 μg of cyanide. A detection limit of 40 μg L–1 was calculated and the recoveries of cyanide from spiked samples were about 80%. This method was compared with the classical pyridine-pyrazolone method. Received: 3 September 1997 / Revised: 21 January 1998 / Accepted: 24 January 1998  相似文献   

7.
A simple and very sensitive method has been developed for the determination of ascorbic acid based on the oxidation of ascorbic acid to dehydroascorbic acid by iron(III), followed by a complexation of iron(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol(Br-PADAP). The iron(II) complex is formed immediately, with absorption maxima at 560 and 748 nm and a molar absorptivity of 1.31 × 105 l mole–1cm–1 and 5.69 × 104 l mole–1cm–1, respectively. The ascorbic acid determination is possible with a linear range up to 2.4 μg ml–1, a calibration sensitivity of 0.744 ml μg–1 at 560 nm and 0.323 ml μg–1 at 748 nm, and a detection limit of 15 ng ml–1 and 44 ng ml–1, respectively. The procedure was used for the ascorbic acid determination in several fruit juices and pharmaceutical formulations. The results demonstrated a good precision (R.S.D. < 1%) and are in agreement with those obtained with others methods. The Br-PADAP method proposed is six times more sensitive than the method using the iron(II)-1,10-phenanthroline system. Received: 7 May 1996 / Revised: 1 July 1996 / Accepted: 8 August 1996  相似文献   

8.
A reliable and highly sensitive method for the determination of hesperidin is described. It involves the formation of a highly fluorescent complex between hesperidin and aluminium (III) in a micellar medium. There is a linear relationship between fluorescence intensity (λem = 496 nm, λex = 391 nm) and hesperidin concentration over the range 5 × 10–7– 2 × 10–5 mol L–1. The detection limit is 79 μg L–1. The method can easily be adapted to a flow system using a three-channel manifold, the peak height being proportional to the hesperidin concentration over the range 1 × 10–6– 1 × 10–4 mol L–1. Manual and flow-injection procedures have been successfully applied to the determination of hesperidin in orange peel and orange juice. Received: 21 October 1998 / Revised: 16 December 1998 / Accepted: 25 December 1998  相似文献   

9.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

10.
A method is described for the flow injection determination of total iron as Fe(III) using a solid-phase reactor containing disodium-1,2-dihydroxybenzene-3,5-disulphonate (tiron) as substrate. The iron(III) reacted with tiron to form a complex which absorbs strongly at 667 nm, where it was measured spectrophotometrically. The system has a linear range of 1 to 50 mg L–1 with a detection limit of 0.67 mg L–1. It is suitable for the determination of total iron in multivitamin tablets and iron-rich ground waters, with a relative standard deviation of better than 1.1%. The results obtained compared favourably with the certified values and a standard ICP-AES method. Received: 12 November 1997 / Revised: 9 March 1998 / Accepted: 15 March 1998  相似文献   

11.
A square wave voltammetric method whith a static mercury drop electrode (SMDE) was developed for the quantitative determination of iron (III) in Zn-Fe alloy galvanic baths. Real alloy bath samples were analyzed by the standard addition method and recovery tests were carried out. 0.50 mol L–1 sodium citrate (pH 6.0) or 0.20 mol L–1 oxalic acid (pH 4.0) were applied as supporting electrolytes resulting in both cases in a peak potential of about –0.20 V vs. Ag|AgCl (saturated KCl). The iron (III) concentration in the alloy bath was 9.0 × 10–4 mol L–1. A good correlation (r = 0.9999) was achieved between the iron (III) concentration and the peak current in the electrolytes studied, with linear response ranges from 1.0 × 10–6 to 1.2 × 10–4 mol L–1. Interference levels for some metals such as copper (II), lead (II), chromium (III) and manganese (II) that can hinder the Zn-Fe alloy deposition were evaluated; only copper (II) interferes seriously. Received: 4 April 2000 / Revised: 19 June 2000 / Accepted: 22 June 2000  相似文献   

12.
A new and efficient Hg(II) back-elution method for the desorption of Cd, Cu, and Pb from Chelex-100 chelating resin was developed. A smaller eluent volume and shorter elution time can be achieved using an Hg(II) containing eluent rather than pure nitric acid. Owing to the remaining Hg(II) ion in the effluent, a mercury thin-film electrode is formed in-situ during the anodic stripping voltammetric determination without any further addition of Hg(II). The results indicate that all the analytes in seawater matrix can be completely adsorbed on Chelex-100 resin from the sample at pH 6.5, and subsequently eluted from the resin with an acid solution of 5 × 10–4 mol/L Hg2+ + 1 mol/L HClO4. The detection limits obtained from the differential-pulse anodic (μg L–1 to ng L–1) stripping voltammetry are at sub-ppb to ppt (μg L–1 to ng L–1) levels permitting to determine Cd, Cu and Pb traces in seawater. The analytical reliability was confirmed by the analysis of the certified reference material CASS-II (open ocean seawater). Received: 22 April 1997 / Revised: 5 August 1997 / Accepted: 7 August 1997  相似文献   

13.
A novel method employing high-performance cation chromatography in combination with inductively coupled plasma dynamic reaction cell mass spectrometry (ICP–DRC–MS) for the simultaneous determination of the herbicide glyphosate (N-phosphonomethylglycine) and its main metabolite aminomethyl phosphonic acid (AMPA) is presented. P was measured as 31P16O+ using oxygen as reaction gas. For monitoring the stringent target value of 0.1 μg L−1 for glyphosate, applicable for drinking and surface water within the EU, a two-step enrichment procedure employing Chelex 100 and AG1-X8 resins was applied prior to HPIC–ICP–MS analysis. The presented approach was validated for surface water, revealing concentrations of 0.67 μg L−1 glyphosate and 2.8 μg L−1 AMPA in selected Austrian river water samples. Moreover, investigations at three waste water-treatment plants showed that elimination of the compounds at the present concentration levels was not straightforward. On the contrary, all investigated plant effluents showed significant amounts of both compounds. Concentration levels ranged from 0.5–2 μg L−1 and 4–14 μg L−1 for glyphosate and AMPA, respectively.  相似文献   

14.
Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the element-specific determination of water-soluble organosilicon species separated by high-performance liquid chromatography (HPLC). Leachates from different waste deposit sites were investigated. The polydimethylsiloxane (PDMS) degradation product dimethylsilanediol (DMSD) could be detected in almost all samples in the low mg L–1 range, and it was furthermore possible to determine trimethylsilanol (TMSOL) in some leachate samples in the μg L–1 range. TMSOL was additionally analyzed by a method established before (LT-GC/ICP-OES). This study proved the occurrence of silanol compounds in leachates from locations were silicone material is deposited. Received: 10 July 1998 / Revised: 2 November 1998 / Accepted: 5 November 1998  相似文献   

15.
A flow-through optosensor has been prepared for the sensitive and selective determination of pyridoxine (vitamin B6) in aqueous solutions. The sensor was developed in conjunction with a monochannel flow-injection analysis system with fluorimetric detection using Sephadex SP-C25 resin as an active sorbent substrate. This method of determination is carried out without any derivatization. The wavelengths of excitation and emission were 295 and 385 nm, respectively. When a HCl (10–3 mol L–1) / NaCl (3 × 10–2 mol L–1) solution is used as carrier solution, the sensor responds linearly in the measuring range of 5–200, 10–400 and 50–1800 ng mL–1 with detection limits of 0.33, 0.67, and 5.70 ng mL–1 for 2000, 1000 and 200 μL of sample volume, respectively. The relative standard deviation for ten independent determinations is less than 0.75% for 0.2 and 1.0 mL of sample volumes used, and 1.31% for 2.0 mL of sample volume used. The method was satisfactorily applied to the determination of vitamin B6 in pharmaceutical preparations. Received: 4 June 1998 / Revised: 16 July 1998 / Accepted: 6 August 1998  相似文献   

16.
An optical fiber sensor for the continuous determination of hydrochloric acid is presented. It is based on the fluorescence quenching of a flavone containing copolymer membrane by hydrochloric acid. The quenching efficiency is greatly enhanced in the presence of Fe(III). This enhancement is attributed to the primary inner filter effect, as well as the formation of a complex between the 4′-N,N-dimethylaminoflavone group in the copolymer and the Fe(III) species extracted from hydrochloric acid solution. The optical response is linear and reversible for 0.10–6.00 mol L–1 HCl with a response time of the order of a second. The standard deviations for repeated alternative measurements of 0.20 and 2.00 mol L–1 hydrochloric acid are 0.32% and 0.46% (n = 10), respectively, indicating a good reproducibility. Because of the covalently bonding of the dye to polymer, the sensor exhibits also a good stability. Selectivity has also been evaluated for some potential interferents. The sensor in conjunction with a flow-injection system can be used for on-line determination of hydrochloric acid. Received: 15 January 1998 / Revised: 14 April 1998 / Accepted: 18 April 1998  相似文献   

17.
A voltammetric stripping procedure is described for the determination of arsenic(V) in a mannitol-sulphuric acid medium. The arsenic is coprecipitated with copper and selenium and reduced to arsine at the hanging mercury drop electrode. Using an accumulation time of 240 s, the detection limit is 0.52 μg L–1, the determination limit is 0.9 μg L–1. The method has been applied to the determination of arsenic in water samples. By varying the composition of the supporting electrolyte it is possible to differentiate between arsenic(III) and arsenic(V). As both oxidation states have different toxicological characteristics, the ability to discriminate between both is an distinct advantage of the proposed method. Received: 25 October 1996 / Revised: 7 February 1997 / Accepted: 12 February 1997  相似文献   

18.
A minicolumn packed with poly(aminophosphonic acid) chelating resin incorporated in an on-line preconcentration system for flame atomic-absorption spectrometry was used to determine ultratrace amounts of lead in mussel samples at μg L–1 level. The preconcentrated lead was eluted with hydrochloric acid and injected directly into the nebulizer for atomization in an air-acetylene flame for measurement. The performance characteristics of the determination of lead were: preconcentration factor 26.8 for 1 min preconcentration time, detection limit (3σ) in the sample digest was 0.25 μg g–1 (dry weight) for a sample volume of 3.5 mL and 0.2 g sample (preconcentration time 1 min), precision (RSD) 2.3% for 25 μg L–1 and 2.0% for 50 μg L–1. The sampling frequency was 45 h–1. The method was highly tolerant of interferences, and the results obtained for the determination of lead in a reference material testify to the applicability of the proposed procedure to the determination of lead at ultratrace level in biological materials such as mussel samples. Received: 1 November 2000 / Revised: 8 January 2001/ Accepted: 11 January 2001  相似文献   

19.
A novel method for the separation and preconcentration of Se(IV)/ Se(VI) with algae and determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The Se(VI) is extracted with algae from the solution containing Se(IV)/Se(VI) at pH 5.0, and the remaining Se(IV) is then preconcentrated pH 1.0. The detection limits (3σ, n = 11) of 0.16 μg L–1 for Se(IV) and 0.14 μg L–1 for Se(VI) are obtained using 40 mL of solution. At the 2.0 μg L–1 level the relative standard deviation is 2.6% for Se(IV) and 2.3% for Se(VI). The method has been applied to the determination of Se(IV)/Se(VI) in sediment and water samples. Analytical recoveries of Se(IV) and Se(VI) added to samples are ?97 ± 5% and 102 ± 6% (95% confidence), respectively. Received: 10 February 1999 / Revised: 21 June 1999 / /Accepted: 22 June 1999  相似文献   

20.
A flow-through bulk optode based on the use of 1-(2-pyridylazo)-2-naphthol (PAN) immobilized in a plasticized poly(vinyl chloride) membrane entrapped in a cellulose support, in conjuntion with the flow injection analysis technique, is proposed for the determination of manganese(II). The calibration graph obtained at 570 nm was linear in the range 0.27–27.5 mg L–1 (5 × 10–6– 5 × 10–4 M) Mn(II) with a detection limit of 0.18 mg L–1. The coefficients of variation of the sensor response for 5.5 mg L–1 of Mn(II) were ±0.22% for consecutive measurements (n = 10), ±0.48% between days (n = 5) and ±0.38% between different membranes (n = 6). The sensor was readily regenerated with the carrier acetic acid/acetate buffer of pH 4.5. The method was applied to the determination of manganese in steels, waters and lemon tree leaves. Received: 13 December 2000 / Revised: 25 January 2001 / Accepted: 26 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号