首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A great deal of research has concentrated on long range electron and energy transport in transition metal-based systems, including molecular donor-acceptor assemblies, electron and energy transfer cascades, dendrimers, and derivatized polymer systems. In an effort to improve efficiencies for electron and energy transport over large distances, several groups have now turned to conjugated systems. Several challenges exist to incorporating conducting materials/polymers in the study of photoinduced electron and energy transfer: solubility and processibility of the materials, thermal stability and limitations on direct spectroscopic characterization due to band gap absorptions. We have prepared a new series of conducting materials that provides for direct incorporation of chromophores and electrophores within the backbone of a conducting polymer. Energy transfer dynamics between conducting polymer bridges and porphyrin or metal-to-ligand charge transfer (MLCT) chromophores can be controlled through intermolecular interactions in solid vs solution samples. We have also developed a methodology to incorporate transmissive benzothiophene-type polymers such as polyisothianaphthene (PITN) within a copolymer assembly. These new materials are now being used to investigate long range electronic coupling and have potential applications that range from artificial photosynthesis to light emitting diodes.  相似文献   

2.
Picosecond time-resolved fluorescence spectroscopy was used to characterize energy transfer between chromophores displayed on a rod assembly of tobacco mosaic virus coat protein. The incorporation of donor chromophores with broad and overlapping absorption and emission spectra creates an "antenna" with a large absorption cross section, which can convey excitation energy over large distances before transfer to an acceptor chromophore. The possibility for both donor-to-donor and donor-to-acceptor transfer results in complex kinetic behavior at any single wavelength. Thus, to describe the various pathways of energy transfer within this system accurately, a global lifetime analysis was performed to obtain decay associated spectra. We found the energy transfer from donor to acceptor chromophores occurs in 187 ps with an efficiency of 36%. A faster decay component of 70 ps was also observed from global lifetime analysis and is attributed to donor-to-donor transfer. Although more efficient three-chromophore systems have been demonstrated, a two-chromophore system was studied here to facilitate analysis.  相似文献   

3.
A blend of a newly synthesized polyfluorene(PDHBF) and polyvinylcarbazole(PVK) exhibits a photoluminescence(PL) emission spectrum of PDHBF without an increase in the PL intensity on photoexcitation at 340 nm, the UV-visible absorption maximum of PVK, despite of a substantial spectrum overlap. However, the indirect photoexcitation of the blend suppresses the secondary emission of the PL with the maximum at 520 nm. The chromophores generating the secondary emission are formed when the chromophores are photoexcited above the critical energy level of an excited state. The chromophores formed by the energy transfer have energy lower than the critical energy and fail to form the excimers. A low temperature PL study of the blend in a cryogenic chamber proves that the energy transfer in the system takes place mainly between the excimers of PVK generated by the partially eclipsed dimeric states of two carbazole units and the fluorophores of PDHBF.  相似文献   

4.
分别对1-3代聚(酰胺-胺)(PAMAM)结构的dendron分子的外端基和focal point进行了修饰,得到了外端基为萘(给体)色团、焦点(focal point)为丹酰(受体)色团的树枝状化合物Dan-ABπ-Nap(n=2,4,8).利用荧光光谱测定了不同浓度下所得一系列树枝状分子在水中的荧光强度,并计算了它...  相似文献   

5.
The antenna system of algae for photosynthesis is a functional entity composed of various phycobiliproteins and the linker polypeptides. Up to now, high-resolution crystal structure data have been available only for the isolated phycobiliproteins. To have an understanding of the functional connection between different phycobiliproteins, it is necessary to study the complexes composed of different phycobiliproteins. The energy transfer processes in C-phycocyanin complexes were studied through computer simulation because it is difficult to be studied by conventional experimental methods. The main pathways of energy flow and the dynamic property of the energy transfer were obtained. A fast transfer process between two neighboring disks was observed through analyzing the distribution curves of excitation energy over time. According to the definition of the time constants for energy transfer in time-resolved spectrum techniques, for a complex with three C-phycoeyanin hexamer disks, a fluorescence-rising comp  相似文献   

6.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

7.
Phycobiliproteinsarethelightharvestingpigmentsforphotosynthesisinalgaeandincludephycoerythrin,phycocyaninandallophycocyanin.Inredandbluealgae,differentkindsofphycobiliproteinsaswellaslinkerpolypeptidesformawellorgnizedsystemwithefficientfunctionsoflig…  相似文献   

8.
9.
In this paper, we review the generalized Forster-Dexter theory to treat photoinduced electronic energy transfer for a system in dense media and for an isolated system (i.e., a system in the collision-free condition). Instead of expressing the rate of energy transfer in terms of spectral overlap, the expression of the energy-transfer rate constant is obtained by evaluating a Fourier integral involved in the energy transfer rate constant using the saddle-point method. In this way, the energy-gap dependence, and the effect of temperature and the isotope effect on the energy transfer can be easily studied. The effect of bridge groups connecting between donor and acceptor chromophores on the intramolecular energy transfer is also studied.  相似文献   

10.
A theoretical analysis has been developed to predict fluorescence nonradiative energy transfer (NBET) behavior in homogeneous and phase-separated polymer blends. Conditions where intermolecular correlations need to be included are examined by first investigating the effect of including intermolecular correlations in predictions of NRET behavior in donor and trap (acceptor) end-labeled polymer melts. Donor fluorescence decays and energy transfer efficiencies are predicted for several different polymer systems using donor-trap intermolecular correlations in the theoretical analysis. These results are compared quantitatively to the same predictions recalculated without correlations and demonstrate the need to consider the effects of correlations when analyzing NRET measurements used for quantitative study of phase behavior. For the nonradiative energy transfer systems investigated here, correlation effects can often result in substantial differences, up to 60% as compared to the uncorrelated case, in predictions of relative energy transfer efficiency for bulk polymer. In the case of the blends, the effect of including intermolecular correlations is strongly a function of composition. A two-phase model is proposed to establish a quantitative method for relating energy transfer efficiency to phase-separated blend composition, and it is demonstrated that significant errors in interpretation of experimental NRET data may result if correlation effects are not included. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The kinetics of photoinduced charge transfer reactions in covalently linked donor-acceptor molecules often undergoes dramatic changes when these molecules self-assemble from a molecular dissolved state into a nanoaggregate. Frequently, the origin of these changes is only partially understood. In this paper, we describe the intermolecular spatial organization of three homologous arrays, consisting of a central perylene bisimide (PERY) acceptor moiety and two oligo(p-phenylene vinylene) (OPV) donor units, in nanoaggregates and identify both face-to-face (H-type) and slipped (J-type) stacking of the OPV and PERY chromophores. For the J-type aggregates, short intermolecular OPV-PERY distances are created that give rise to a charge-transfer absorption band. The proximity of the donor and acceptor groups in the J-type aggregates enables a highly efficient photoinduced charge separation with a rate (k(cs) > 10(12) s(-1)) that significantly exceeds the rate of the intramolecular charge transfer of the same compounds when molecularly dissolved, even in the most polar media. In the H-type aggregates, on the other hand, the intermolecular OPV-PERY distance is not reduced compared to the intramolecular separation, and hence, the rates of the electron transfer reactions are not significantly affected compared to the molecular dissolved state. Similar to the forward electron transfer, the kinetics of the charge recombination in the aggregated state can be understood by considering the different interchromophoric distances that occur in the H- and J-type aggregates. These results provide the first consistent rationalization of the remarkable differences that are observed for photoinduced charge-transfer reactions of donor-acceptor compounds in molecularly dissolved versus aggregated states.  相似文献   

12.
Miller JN 《The Analyst》2005,130(3):265-270
Energy transfer phenomena, in which excited fluorophores transfer energy to neighbouring chromophores, are well characterised in photochemistry and have found a wide range of applications in analytical biochemistry. The transfer of energy from a donor to an acceptor group is only significant over distances of a few nm, so it can be used as a spectroscopic ruler and as a means of detecting molecular interactions and conformational changes. Such methods usually retain the great sensitivity and sample handling flexibility of conventional fluorescence techniques. As a result many assays involving enzymes, antibodies and nucleotides utilise energy transfer measurement principles. This article outlines these principles for the main types of energy transfer, and summarises some of their most important areas of application.  相似文献   

13.
Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures.  相似文献   

14.
The relativistic long-range intermolecular interaction energy term of Mavroyannis and Stephen is estimated for some amino acids by using optical rotatory dispersion data and for hexahelicene by using theoretical values of excitation energies and rotational strengths. The result shows that the interaction energy may be significant for the interaction between some essentially dissymmetric chromophores such as hexahelicene, but that it is unimportant for other cases.  相似文献   

15.
16.
In order to better understand the nature of intramolecular charge and energy transfer in multibranched molecules, we have synthesized and studied the photophysical properties of a monomer quadrupolar chromophore with donor-acceptor-donor (D-A-D) electronic push-pull structure, together with its V-shaped dimer and star-shaped trimers. The comparison of steady-state absorption spectra and fluorescence excitation anisotropy spectra of these chromophores show evidence of weak interaction (such as charge and energy transfer) among the branches. Moreover, similar fluorescence and solvation behavior of monomer and branched chromophores (dimer and trimer) implies that the interaction among the branches is not strong enough to make a significant distinction between these molecules, due to the weak interaction and intrinsic structural disorder in branched molecules. Furthermore, the interaction between the branches can be enhanced by inserting π bridge spacers (-C═C- or -C≡C-) between the core donor and the acceptor. This improvement leads to a remarkable enhancement of two-photon cross-sections, indicating that the interbranch interaction results in the amplification of transition dipole moments between ground states and excited states. The interpretations of the observed photophysical properties are further supported by theoretical investigation, which reveal that the changes of the transition dipole moments of the branched quadrupolar chromophores play a critical role in observed the two-photon absorption (2PA) cross-section for an intramolecular charge transfer (ICT) state interaction in the multibranched quadrupolar chromophores.  相似文献   

17.
Chlorophyll derivatives possessing triethoxysilyl groups have been synthesized for the first time and grafted on mesoporous silica to construct an efficient energy transfer system between the chromophores.  相似文献   

18.
Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.  相似文献   

19.
We report on the ensemble and single-molecule (SM) dynamics of F?rster resonance energy transfer (FRET) in a multichromophoric rigid polyphenylenic dendrimer (triad) with spectrally different rylene chromophores featuring distinct absorption and emission spectra which cover the whole visible spectral range: a terrylenediimide (TDI) core, four perylenemonoimides (PMIs) attached at the scaffold, and eight naphthalenemonoimides (NMIs) at the rim. For FRET from PMI to TDI taking place with an efficiency of 99.5%, single triad molecules optically excited at 490 nm show fluorescence exclusively from the TDI side in the beginning of their emission. On 360-nm excitation, NMI chromophores transfer their excitation energy either directly or in a stepwise fashion to the core TDI, the latter case involving scaffold-substituted PMIs as intermediate acceptors. Indeed, SM experiments on 360-nm excitation evidence highly efficient FRET from NMI chromophores to the TDI core since individual triad molecules show fluorescence exclusively either from TDI or from an intermediate (oxidized) species but never from PMI. Because PMI and TDI are chromophores with high fluorescence quantum yields and high resistance to photobleaching compared to NMI, 360-nm excitation of a single triad molecule leads to bleaching of NMI chromophores with no chance for PMI to be observed. The spatial positioning and the spectral properties of the chosen rylene chromophores make this multichromophoric system an efficient light collector, able to capture light over the whole visible spectral range and to transfer it finally to the core TDI, the latter releasing it as red fluorescence.  相似文献   

20.
Juan Tolosa 《Tetrahedron letters》2006,47(27):4647-4651
The selective synthesis of a four-armed tolane with different fluorescent chromophores that are asymmetrically distributed is described. Its optical absorption and emission properties were examined. This multichromophoric molecule exhibits a charge-transfer pathway that has a pronounced effect on the overall optical properties, together with an energy transfer process. Appropriate basic centers are present, meaning that the energy transfer processes can be stopped by the addition of acid—a process that makes this system a fluorescent pH-sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号