首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The corrosion inhibition of copper–nickel alloy by Benzotriazole (BTA) in 1.5 M HCl has been investigated by weight loss and polarization techniques at different temperatures. Maximum value of inhibitor efficiency was 99.8% for BTA at 35 °C and 0.1 M inhibitor concentration, while the lower value was 86.8% at 55 °C and 0.02 M inhibitor concentration. The non-linear region of the polarization curve near the corrosion potential can be discussed depending on data of over potential as a function of current densities. These data can be analyzed by suggestion of a mathematical model to take into account the effect of mass transfer on activation process.  相似文献   

2.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

3.
The essential oil of the aerial parts of Lavandula multifida L., collected in Errachidia region (three samples) in southeast Morocco, was extracted by hydrodistillation and analyzed by GC and GC-MS. The oil was predominated by carvacrol (57.9–59.0%). L. multifida oil was tested as corrosion inhibitor of C38 steel in 0.5 M H2SO4 using weight loss measurements, electrochemical polarization, and EIS methods. The results obtained by measurements of weight loss showed that inhibition efficiency increases with inhibitor concentration to attain 72.2% at 2 g/l of oil at 298 K. Polarization curves revealed that L. multifida oil acts as mixed type inhibitor. The temperature effect on the corrosion behavior of steel in 0.5 M H2SO4 without and with the inhibitor at 2 g/l was studied in the temperature range from 303 and 343 K. The adsorption of inhibitor on the C38 steel surface was found to be a spontaneous process and to obey Langmuir’s adsorption isotherm. The associated activation energy has been determined.  相似文献   

4.
The corrosion inhibition of mild steel in H3PO4 solution by garlic powder was investigated using weight loss and polarization techniques. The adsorption of garlic powder was found to obey Langmuir adsorption isotherm. Maximum inhibition efficiency was 75% at 50 °C and 250 ppm inhibitor concentration. The values of heat of adsorption were negative indicating the spontaneous adsorption process. Quantum chemical calculations were used successfully to evaluate the theoretical inhibitor efficiency. Mathematical and statistical analyses were also used to represent the corrosion rate data with high correlation coefficients. Polarization measurements showed that garlic powder was a mixed — type inhibitor.  相似文献   

5.
《印度化学会志》2023,100(6):101013
Through using chemical and electrochemical methods, the theoretical and experimental investigation of the expired vilazodone drug's ability to prevent corrosion on aluminium (Al) in a corrosive medium of HCl (1 M) has been examined. Weighing tests (WL), electrochemical (impedance spectroscopy (EIS), potentiodynamic polarization (PDP)), atomic force microscopy (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) tests at 25 °C have all been used to investigate Vilazodone's capability to prevent corrosion of Al in 1 M HCl in the concentration in the range of 25–150 ppm. The corrosion inhibition effect of the investigate Vilazodone's against Al in acid environment was investigated weight loss and electrochemical methods. The highest % inhibition efficiency (%IE) was 95% resulted from weight loss technique at the highest concentration for inhibitor. According to the PDP data, this examined vilazodone function as a mixed-type inhibitor, impacting both the anodic and cathodic reactions. The inhibitors covered the active points of the metal surface, according to electrochemical impedance spectroscopy (EIS), to prevent corrosion. It was discovered that the inhibitor adsorption on the Al surface obeyed the Langmuir adsorption isothermal model. AFM, SEM, and FTIR surface examinations proved the inhibitor had a significant protective effect against Al dissolution in 1 M HCl. The outcomes from chemical and electrochemical methods are relatively consistent. Vilazodone acted as an effective corrosion inhibitor, according to all of the experimental data.  相似文献   

6.
1,3,5-tri-p-tolyl-1,3,5-triazene was investigated as a corrosion inhibitor for brass in 0.5 M HCl solution using weight loss, potentiodynamic polarization, linear polarization resistance and electrochemical impedance spectroscopy. Data obtained from these methods showed average inhibition efficiency (76 %) at optimum concentration. The adsorption of the inhibitor on the brass surface follows the Frumkin adsorption isotherm.  相似文献   

7.
The inhibiting efficiency of 2-mercapto-1-methylimidazole (MMI) on copper corrosion in sulfuric acid was investigated at 30 °C. Its effectiveness was assessed through electrochemical impedance spectroscopy, potentiodynamic polarization and gravimetric measurements. The results of study reveal that the inhibition efficiency of MMI depends on its concentration and attains approximately 81% at 10?4 M. The inhibitor was adsorbed on the copper surface according the Langmuir adsorption isotherm model. The value of standard free energy of adsorption was calculated from this isotherm.  相似文献   

8.
The efficiency of chitosan (a naturally occurring polymer) as a corrosion inhibitor for mild steel in 0.1 M HCl was investigated by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy measurements, scanning electron microscopy, and UV–visible analysis. The polymer was found to inhibit corrosion even at a very low concentration. Inhibition efficiency increases with a rise in temperature up to 96 % at 60 °C and then drops to 93 % at 70 °C, while it slightly increases with an increase in chitosan concentration. Polarization curves indicate that chitosan functions as a mixed inhibitor, affecting both cathodic and anodic partial reactions. Impedance results indicate that chitosan was adsorbed on the metal/solution interface. Adsorption of chitosan at the mild steel surface is found to be in agreement with Langmuir adsorption isotherm model. Chemical adsorption is the proposed mechanism for corrosion inhibition considering the trend of protection efficiency with temperature. Calculated kinetic and thermodynamic parameters corroborate the proposed mechanism.  相似文献   

9.
Corrosion of metals within magnetic field (MF) had been actively studied for better understanding of the corrosion mechanism when the magnetic sources are presented. However, findings regarding the effect of MF on metals are inconclusive, and there is a lack of studies of MF interaction with various corrosion control techniques, such as corrosion inhibitor. In this paper, the effect of MF on the corrosion of copper in 0.5 M hydrochloric acid (HCl) solution, with or without corrosion inhibitor were studied. Benzotriazole (BTA), a common copper inhibitor, was chosen as the inhibitor for this study. To determine the effect of MF, a MF of 13 mT, generated using a pair of permanent neodymium magnet, was applied during weight loss and electrochemical tests. The results showed that corrosion inhibition efficiency of BTA decreased when it is under an applied MF. A decrease from 47% to 60% in inhibition efficiency had been observed for all samples in an applied MF. By using Tafel extrapolation technique on the polarization curves, it revealed that MF had increased the corrosion current of copper in HCl, causing a decrease in the inhibition efficiency.  相似文献   

10.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

11.
The inhibition effect of cetyl trimethyl ammonium bromide (CTAB) on the corrosion of mild steel in 1.0 mol L?1 hydrochloric acid (HCl) has been studied at different temperatures (25–60°C) by weight loss and potentiodynamic polarization methods. The results reveal that CTAB behaves as an effective inhibitor in 1.0 mol L?1 HCl, and the inhibition efficiency increases with the inhibitor concentration. Polarization curves show that CTAB is a mixed-type inhibitor in hydrochloric acid. The results obtained from weight loss and polarizations are in good agreement. The effect of immersion time on corrosion inhibition has also been examined and is discussed. The adsorption of inhibitor on mild steel surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. The inhibition effect is satisfactorily explained by the parameters.  相似文献   

12.
The corrosion behaviour of mild steel and aluminium exposed to H2SO4 solution and their inhibition in H2SO4 containing 0.1–0.5 g/L Gum Arabic (GA) used as inhibitor was studied at temperature range of 30–60 °C using weight loss and thermometric techniques. Corrosion rate increased both in the absence and presence of inhibitor with increase in temperature. Corrosion rate was also found to decrease in the presence of inhibitor compared to the free acid solution. Inhibition efficiency increases with increase in concentration of the inhibitor reaching a maximum of 37.88% at 60 °C for mild steel and 79.69% at 30 °C for aluminium at 0.5 g/L concentration of GA. The inhibitor, GA was found to obey Temkin and El-Awady et al. thermodynamic kinetic adsorption isotherm for mild steel and aluminium respectively from the fit of the experimental data at all concentrations and temperatures studied. The phenomenon of chemical adsorption is proposed for mild steel corrosion, while physical adsorption mechanism is proposed for aluminium corrosion. Results obtained for the kinetic/thermodynamic studies indicate that the adsorption of GA onto the metals surface was spontaneous. GA is a better corrosion inhibitor for aluminium than for mild steel.  相似文献   

13.
The usefulness of aniline formaldehyde (AF), a modern water-soluble composite in 0.5 ?N hydrochloric acid as inhibitor of corrosion for mild steel, has been studied using weight reduction method, test of electrochemical impedance and potentiodynamic polarization methods. According to the findings by weight loss methods, 12ppm of AF co-polymer at room temperature i.e. about 35° ?± ?1°C for 3h duration shows best performance on metal surface and exhibit 93.44% Inhibitor efficiency. The above said results has also being reviled from other examination methods, which shows that the AF follows the Langmuir isotherm, as well as the adsorption properties of the sampling supports the results as maximum IE of 95.05%, using EIS. The tafel and linear polarization results of maximum IE was found to be 94.81% and 94.96% respectively which was well aligned with an atomic force microscope (AFM) for surface morphology and found AF to be best suited corrosion inhibitor showing mixed type of nature, at defined parameters.  相似文献   

14.
Inhibition of the corrosion of mild steel in molar hydrochloric acid by two calixarenes, including the effect of inhibitor concentration and temperature, has been investigated by use of weight loss and electrochemical measurements (polarisation and impedance). The results obtained showed that the rate of corrosion decreased substantially in the presence of the compounds, with maximum inhibition of 98.2 % by one of the compounds at a concentration of 10?3 M. The effect of temperature on corrosion behaviour in the presence of different concentrations of the two new calixarenes was studied in the range 45–75 °C. The efficiency of inhibition by the compounds increased with increasing inhibitor concentration and was independent of temperature. Polarisation curves revealed that the calixarenes are mixed-type inhibitors. Adsorption of the inhibitors by the carbon steel surface obeyed the Langmuir adsorption isotherm. Some thermodynamic data for the dissolution and adsorption processes were also determined.  相似文献   

15.
The inhibition effect of aqueous Argemone mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94 % is acknowledged at the extract concentration of 400 mg L?1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at the metal–acid interface. It is also confirmed by SEM micrographs and FTIR studies. Furthermore, the effects of acid concentration (1–5 M), immersion time (120 h) and temperature (30–60 °C) on inhibition potential of AMRE have been investigated by the weight loss method and electrochemical techniques. An adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with the Langmuir isotherm.  相似文献   

16.
Abstract

The inhibitive effect of the Murraya koenigii (curry leaf) leaf extract on the corrosion of mild steel in 1 M HCl was investigated by using weight loss, open circuit potential measurements, potentiostatic polarization techniques, and impedance analysis. The results show that Murraya koenigii extract is an effective corrosion inhibitor for protecting the corrosion of mild steel in 1 M HCl medium even at stimulated conditions. The inhibition efficiency increases with increasing the concentration of the inhibitor in the medium. The percentage inhibitor efficiency under stagnant condition calculated based on weight loss method is found to be above 94.5% when the medium contains 1000 ppm of the inhibitor.  相似文献   

17.
An extract of Mentha rotundifolia leaves (EMRL) was tested as a corrosion inhibitor of steel in 1 M HCl using electrochemical impedance spectroscopy, Tafel polarization methods, and weight loss measurements. The inhibition efficiency of the extract of Mentha rotundifolia leaves was calculated and compared. We note good agreement between these methods. The results obtained revealed that the inhibitor tested differently reduced the kinetics of the corrosion process of steel. Its efficiency increases with the concentration and attained 92.87 % at 35 %. The effect of temperature on the corrosion behavior of steel in 1 M HCl was also studied in the range 298 and 338 K. The thermodynamic data of activation were determined. Mentha rotundifolia extract is adsorbed on the steel surface according to a Langmuir adsorption model.  相似文献   

18.
The inhibiting action of a nonionic surfactant of Tween-20 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulfuric acid (H(2)SO(4)) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The results show that inhibition efficiency increases with the inhibitor concentration, while it decreases with the sulfuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 degrees C, the thermodynamic parameters such as adsorption heat, adsorption free energy, and adsorption entropy were calculated. The results revealed that the adsorption was physisorption mechanism. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic models. Polarization curves show that Tween-20 is a cathodic-type inhibitor in sulfuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the Tween-20 inhibition action could also be evidenced by surface AFM images.  相似文献   

19.
The inhibitive effect of 2-cyano-3-hydroxy-4(Ar)-5-anilino thiophene derivatives on the corrosion of 304 stainless steel (SS) in 3 M HCl solution has been investigated by weight loss, galvanostatic polarization techniques, and potentiodynamic anodic polarization in 3.5 % NaCl. The results indicate that these compounds act as inhibitors retarding the anodic and cathodic corrosion reactions. The presence of inhibitors does not change the mechanism of either hydrogen evolution reaction or SS dissolution. The activation energy and some thermodynamic parameters are calculated and discussed. These compounds are mixed-type inhibitors in the acid solution, and their adsorption on the SS surface is found to obey the Temkin adsorption isotherm. The results suggest that the percentage inhibition of these thiophene derivatives increases with increasing inhibitor concentration and decreases with increasing temperature. The synergistic parameter (S) was calculated and found to have a value greater than unity, indicating that the enhanced inhibition efficiency caused by the addition of I?, SCN?, and Br? is only due to a synergistic effect. The relationship between molecular structure and inhibition efficiency was elucidated by quantum-chemical calculations using semi-empirical self-consistent field (SCF) methods.  相似文献   

20.
Extracts of pomegranate have been investigated, by use of weight loss and potentiodynamic polarization techniques, as green and eco-friendly inhibitors of corrosion of Q235A steel in 1 M hydrochloric acid solution at 60 °C. The efficiency of inhibition by the extracts varied with extract concentration from 10 to 1,000 mg/L; the highest efficiency was 95.0 %. The extracts inhibit corrosion mainly by an adsorption mechanism. In addition, the hydroxyl and ether groups of polyphenols can capture the H+ to reduce the corrosion, and the polyphenols can eliminate dissolved O2 to inhibit oxygen-adsorption corrosion. Potentiodynamic polarization studies show that extracts are mixed-type inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号