首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free fatty acids (FFAs), major cellular metabolites, play an important role during tumor pathogenesis. Enhanced de novo fatty acid synthesis in tissues is a characteristic feature of cancer. Therefore, measurement of FFA concentration in biological samples is beneficial for cancer research and clinical diagnosis. Herein, a rapid, stable, and sensitive detection methodology was established to simultaneously quantify 22 FFAs using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI–MS/MS). The HPLCMS/MS system was run in negative ion mode for 15 min using multiple reaction monitoring. The lipids were extracted from colon tissues of colon cancer patients and then injected into the HPLCMS/MS system for analysis. Colon samples were analyzed by inter-day repeatability and intra-day repeatability, with less than 5 % deviation for most fatty acids. This approach is successful to determine low picogram concentrations of each FFA molecule using milligrams of tissue, and provides a promising method for FFA microanalysis in clinical samples.  相似文献   

2.
The dynamic rheological behavior of high density polyethylene (HDPE)/ultrahigh molecular weight polyethylene (UHMWPE) blends, low density polyethylene (LDPE)/UHMWPE blends and linear low density polyethylene (LLDPE)/ UHMWPE blends was measured in parallel plate rheometer at 200°C. The analysis of log-additivity rule, Cole-Cole plots and Han curves of the three series blends indicated that the LDPE/UHMWPE blends were miscible in the melt, while the HDPE/UHMWPE blends and LLDPE/UHMWPE blends showed phase separation. The DSC results of LLDPE/UHMWPE blends and HDPE/UHMWPE blends were consistent with the rheological properties, while for the thermal properties of LDPE/UHMWPE blends, results revealed three endothermic peaks, which indicated a liquid-solid phase separation in LDPE/UHMWPE blends.  相似文献   

3.
A sensitive and ultra-fast method utilizing the laser diode thermal desorption ion source using atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS) was developed for the quantitative analysis of BKM120, an investigational anticancer drug in human plasma. Samples originating from protein precipitation (PP) followed by salting-out assisted liquid-liquid extraction (SALLE) were spotted onto the LazWell? plate prior to their thermal desorption and detection by tandem mass spectrometry in positive mode. The validated method described in this paper presents a high absolute extraction recovery (>90 %) for BKM120 and its internal standard (ISTD) [D8]BKM120, with precision and accuracy meeting the acceptance criteria. Standard curves were linear over the range of 5.00 to 2000 ng mL?1 with a coefficient of determination (R 2) >0.995. The method specificity was demonstrated in six different batches of human plasma. Intra- and inter-run precision as well as accuracy within ±20 % at the lower limit of quantification (LLOQ) and ±15 % (other levels) were achieved during a three-run validation for quality control (QC) samples. The post-preparative stability on the LazWell? plate at room temperature was 72 h and a 200-fold dilution of spiked samples was demonstrated. The method was applied successfully to three clinical studies (n?=?847) and cross-checked with the validated LC-ESI-MS/MS reference method. The sample analysis run time was 10 s as compared to 4.5 min for the current validated LC-ESI-MS/MS method. The resultant data were in agreement with the results obtained using the validated reference LC-ESI-MS/MS assay and the same pharmacokinetic (PK) parameters were calculated for both analytical assays. This work demonstrates that LDTD-APCI-MS/MS is a reliable method for the ultra-fast quantitative analysis of BKM120 which can be used to speed-up and support its bioanalysis in the frame of the clinical trials.  相似文献   

4.
5.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the group of drugs having the therapeutic efficacy of analgesic and antipyretic. To detect health-threatening residues of NSAIDs, a fast and easy multiresidue method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) was described. Ten NSAIDs were extracted from the tissues using 2 mL of acetonitrile and 0.1 mL of 2 mM ammonium formate in distilled water. After clean-up using C18 sorbent, it was evaporated under nitrogen, reconstituted with 1 mL distilled water and analyzed by LC-MS/MS. The method was validated based on guideline for residue testing laboratory. Furthermore, the method has also been applied successfully to detect ten NSAIDs from bovine, porcine, and chicken liver tissues. In a total of 315 liver samples tested, acetylic salicylic acid was detected from 28 porcine and 2 chicken liver tissues at levels of 13?~?576 and 50?~?53 ng/g, respectively. Subsequently, paracetamol was detected in 15 porcine liver tissues with a detection levels of 28?~?381 ng/g. Phenylbutazone and its metabolite, oxyphenylbutazone, were detected at 247 and 15 ng/g range in one of the bovine liver tissue, respectively.  相似文献   

6.
Ultraperformance convergence chromatography/tandem triple quadrupole mass spectrometry (UPC2-MS/MS) is a novel tool in separation science that combines the advantages of supercritical fluid chromatography with ultraperformance liquid chromatography/MS/MS technology. The use of nontoxic CO2 fluid and a postcolumn additive to complement MS/MS allows better control of analyte retention for chiral separation and high-sensitivity determination with different chiral stationary phases. This paper reports the stereoselective separation and determination of the chiral neonicotinoid sulfoxaflor in vegetables and soil by UPC2-MS/MS. Baseline resolution (Rs?≥?1.56) of and high selectivity (LOQ?≤?1.83 μg/kg) for the four stereoisomers were achieved by postcolumn addition of 1 % formic acid–methanol to a Chiralpak IA-3 using CO2/isopropanol/acetonitrile as the mobile phase at 40 °C, 2,500 psi, and for 6.5 min in electrospray ionization positive mode. Rearranged Van’t Hoff equations afforded the thermodynamic parameters ΔH ο and ΔS ο, which were analyzed to promote understanding of the enthalpy-driven separation of sulfoxaflor stereoisomers. The interday mean recovery, intraday repeatability, and interday reproducibility varied from 72.9 to 103.7 %, from 1.8 to 9.2 %, and from 3.1 to 9.4 %, respectively. The proposed method was used to study the pharmacokinetic dissipation of sulfoxaflor stereoisomers in soil under greenhouse conditions. The estimated half-life ranged from 5.59 to 6.03 d, and statistically nonsignificant enantioselective degradation was observed. This study not only demonstrates that the UPC2-MS/MS system is an efficient and sensitive method for sulfoxaflor stereoseparation, but also provides the first experimental evidence of the pharmacokinetic dissipation of sulfoxaflor stereoisomers in the environment. Graphical Abstract
Chemical structure and UPC2-MS/MS separation chromatogram of sulfoxaflor. (* stereogenic center)  相似文献   

7.
β-phase polyvinylidene fluoride (PVDF)–BaTiO3 nanocomposite samples have been prepared by solution mixing method. XRD data represent that the crystallinity of PVDF decreases with increase in loading level of BaTiO3 nanoparticles. DSC curve represents that the melting point of PVDF is lightly affected by loading concentration of BaTiO3. The morphology and microstructure of PVDF and PVDF embedded by BaTiO3 nanofillers were investigated by using inverted contrast microscopy (ICM) and scanning electron microscopy (SEM). FTIR interferrometry is proven that PVDF and BaTiO3 are not chemically interacting; therefore, interaction of BaTiO3 is van der Waals type of interaction. The thermally stimulated discharge current (TSDC) of PVDF and PVDF–BaTiO3 nanocomposites sample was characterized by single peak. The observed TSDC peak is discussed on the basis of dipolar and interfacial polarization.  相似文献   

8.
The 4-POBN[α-(4-pyridyl-l-oxide)-N-tert-butyl-nitrone] radical adducts of ethyl and pentyl radicals were determined by a combination of high performance liquid chromatography (HPLC) combined with electron paramagnetic resonance (EPR) with HPLC-electrospray (ESI)-mass spectrometry and HPLC-thermospray (TSP)-MS. The identifIcation of the peak corresponding to the spin-trapped radical was done by performing HPLC-EPR under the same chromatographic conditions as the HPLC-MS. The radical adducts could be determined by both techniques, even though for ESI only 12 μL/min of the total 1 mL/min HPLC flow rate could be directed into the ion source.  相似文献   

9.
10.
A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region.  相似文献   

11.
This study evaluates solid-phase micro-extraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) to determine trace levels of bis-phenol A in water and leached from plastic containers. In our study, we used very thin composite membranes prepared in the laboratory. The extraction using headspace post-derivatization with bis(trimethylsilyl) trifluoroacetamide (BSTFA), containing 1 % trimethylchlorosilane (TMCS) vapor, following SPME was compared with extraction without derivatization. The SPME experimental procedures to extract bis-phenol A in water were optimized with a relatively polar polyacrylate (PA)-coated fiber, an extraction time of 50 min, and desorption at 300 °C for 2 min. Headspace derivatization following SPME was performed using 7 μL of BSTFA with 1 % TMCS at 65 °C for 30 s. The precision was 5.2 % without derivatization and 9.0 % headspace derivatization. The detection limit was determined to be at the nanogram per liter level. When SPME was used following headspace derivatization, the detection limit was one order of magnitude better than that achieved without derivatization. The results of this study reveal the adequacy of the SPME–GC–MS method for analyzing bisphenol A leached from plastic containers. The concentrations of bisphenol A leached from plastic containers into water ranged from 0.7 to 78.5 μg L?1.  相似文献   

12.
In this study, Pt nanoparticles (NPs) were supported on reduced graphene oxide with the aid of disodium ethylenediamine-tetraacetate, where the Pt iona were initially attached to EDTA-functionalized graphene oxide (EDTA-GO) sheets and then the metal ion and the graphene oxide were reduced simultaneously by ethylene glycol. Electrochemical properties of the catalysts were studied by measuring cyclic voltammetries, and functional groups of the synthesized materials were investigated by Fourier transform infrared spectrometry. Average sizes and lattice parameters were measured by scanning electron microscopy, transmission electron microscopy images, and X-ray diffraction. The results showed that Pt NPs were successfully deposited on the EDTA-GO with the crystallite size of about 2.3 nm. The prepared catalysts demonstrated an enhanced tolerance towards CO poisoning, when EDTA-GO was used as supports. This suggests that EDTA plays a crucial role in the dispersion and electrocatalytic activity of the metal nanoparticles.  相似文献   

13.
The ability of MALDI TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) to identify cultivable microflora from two waste disposal sites from non-ferrous metal industry was analysed. Despite the harsh conditions (extreme pH values and heavy metal content in red mud disposal site from aluminium production or high heavy metal content in nickel sludge), relatively high numbers of bacteria were recovered. In both environments, the bacterial community was dominated by Gram-positive bacteria, especially by actinobacteria. High-quality MALDI TOF mass spectra were obtained but most of the bacteria isolates could be not identified using MALDI Biotyper software. The overall identification rate was lower than 20 %; in two of the environments tested identification rates were lower than 10 %. As a dominant bacterial species, Microbacterium spp. in drainage water from an aluminium red mud disposal site near ?iar nad Hronom, Bacillus spp. in red mud samples from the same site, and Arthrobacter spp. from nickel smelter sludge near Sereï were identified by a combination of the Biolog system and 16S rRNA sequence analysis. As the primary focus of the MALDI TOF MS-based methodology is directed towards medically important bacteria, reference database spectra expansion and refinement are needed to improve the ability of MALDI TOF MS to identify environmental bacteria, especially those from extreme environments.  相似文献   

14.
p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0~14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.  相似文献   

15.
In the development of nanoparticle-based vaccine adjuvants, the interaction between nanoparticles (NPs) and the cells is a key factor. To control them, we focused on the relationship between the hydrophobicity of the side chains and the cell membrane. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA), using various types of hydrophobic side chains, was synthesized and used to prepare NPs for evaluating the membrane disruptive activity. When leucine ethyl ester (Leu), methionine ethyl ester (Met), or tryptophan ethyl ester (Trp) was grafted, each polymer formed monodispersed NPs at physiological conditions. Significantly, NPs composed of Leu and Trp showed a membrane disruptive activity at the endosomal environment (pH 5–6.5), while NPs composed of Met did not show. This might be due to the weak hydrophobicity of Met compared to that of Leu and Trp, which demonstrated that the interaction between NPs and cells could be controlled by designing the polymer compositions.  相似文献   

16.
A new nanoparticle formulation has been developed by using dimethyl-β-cyclodextrin (DM-β-CD) with raloxifene HCl or tamoxifene citrate. Both drugs are insoluble in water and represent as low bioavailibilities when given orally. Tamoxifen has an FDA approval for breast cancer prevention and the treatment. Raloxifene is approved for osteoprosis treatment. Both drugs were selected as a model drug antitumoural activity and MMP-2 inhibition studies were evaluated on breast cancer cell lines MCF-7 and MDA-MB 231. MMP-2 is known to be responsible for tumour invasion and initation the of angiogenesis. DM-β-CD and sodium taurocholate (NaTC) have been used as absorption enhancers to increase penetration effect of raloxifene/tamoxifen on the tumour cells and aimed to provide high antitumoral activity and MMP-2 inhibition results by developed nanoparticle formulations. The effects of two absorption enhancers were compared. The highest antitumoral activity was observed for DM-β-CD—raloxifene HCl nanoparticle formulation and also MMP-2 enzyme inhibit effectively.  相似文献   

17.
MicroRNAs (miRNAs), a class of small endogenous nonprotein-coding RNAs, regulate a wide range of biological processes, and their abnormal expressions are related to the growth and development of plants. Thus, a simple, rapid, and highly sensitive assay for miRNA detection is of great significance. In this work, a label-free and ultrasensitive assay for miRNA detection using protein cage nanoparticles has been developed. Apoferritin-encapsulated Cu nanoparticles (Cu-apoferritin) could be immobilized on the electrode through special reaction between amino and carboxyl. Hybridization event between the probe DNA and the target miRNA-159a is confirmed by electrochemical oxidation signal after Cu released into the detection buffer by adjusting the pH. This assay is highly selective and sensitive with a low detection limit of 3.5 fM. Moreover, the developed method can even discriminate single-base mismatched strand between the complementary targets. The effect of abscisic acid on the expression level of miRNA-159a in Arabidopsis thaliana seeds was also investigated.  相似文献   

18.
The MALDI-LTQ-Orbitrap XL mass spectrometer is a high performance instrument capable of high resolution and accurate mass (HRAM) measurements. The maximum m/z of 4000 precludes the MALDI analysis of proteins without generating multiply charged ions. Herein, we present the study of HRAM laserspray ionization mass spectrometry (MS) with MS/MS and MS imaging capabilities using 2-nitrophloroglucinol (2-NPG) as matrix on a MALDI-LTQ-Orbitrap XL mass spectrometer. The optimized conditions for multiply charged ion production have been determined and applied to tissue profiling and imaging. Biomolecules as large as 15 kDa have been detected with up to five positive charges at 100 K mass resolution (at m/z 400). More importantly, MS/MS and protein identification on multiply charged precursor ions from both standards and tissue samples have been achieved for the first time with an intermediate-pressure source. The initial results reported in this study highlight potential utilities of laserspray ionization MS analysis for simultaneous in situ protein identification, visualization, and characterization from complex tissue samples on a commercially available HRAM MALDI MS system. Graphical Abstract
?  相似文献   

19.
Nanocomposite materials composed of HDPE and new guanidine-containing organoclays have been investigated. The basic changes in the relaxation properties of HDPE after the addition of guanidine-containing organoclays that vary in composition and content have been found. It has been shown that, depending on their structures and affinities for the polymer, guanidine-containing modifiers of montmorillonite have different effects on the structure and relaxation properties of the polymer.  相似文献   

20.
High-resolution mass spectrometry (HRMS), hybrid tandem mass spectrometry (MS/MS) (EBqQ), and photoelectron-photoion coincidence (PEPICO) experiments were conducted to examine a possible ortho-ortho effect resulting in a novel [M - 35]+ fragment ion in 2-alkyl-4, 6-dinitrophenols. For compounds having ethyl or larger alkyl substituents, [M35]+ was observed only when [M - 18]+ ions were present, with the ortho nitro group being involved in the reaction to [M- 35]+. For [M - 18]+ and [M - 35]+, HRMS results were consistent with losses of H2O and H2O + OH, respectively, whereas MS/MS results indicated a sequential reaction due to metastable dissociations. The appearance energy determined by PEPICO for [M - 35]+ was found to be greater than the appearance energy for [M - 18]+, thus supporting a sequential reaction. 69–75).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号