首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
Excess volumes (v^E), ultrasonic velocities (u), isentropic compressibility (△Ks) and viscosities (η) for the binary mixtures of dimethyl formamide (DMF) with 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-nitrotoluene and m-nitrotoluene at 303.15 K were studied. Excess volume data exhibit an inversion in sign for the mixtures of dimethyl formamide with 1,2- and 1,3-dichlorobenzenes and the property is completely positive over the entire composition range for the mixtures of dimethyl formamide with 1,2,4-trichlorobenzene, o-nitrotoluene and m-nitrotoluene. On the other hand, the quantity is negative for the mixtures of dimethyl formamide with chlorotoluenes. Isentropic compressibility (Ks) has been computed for the same systems from precise sound velocity and density data. Further, deviation of isentropic com- pressibility (△Ks) from ideal behavior was also calculated. AKs values are negative over the entire volume fraction range in all the binary mixtures. The experimental sound velocity data were analysed in terms of Free Length Theory (FLT) and Collision Factor Theory (CFT). The viscosity data were analysed on the basis of corresponding state approach. The measured data were discussed on the basis of intermolecular interactions between unlike molecules.  相似文献   

2.
The conversion process from bicyclo[4.1.0]heptatriene (BCT) to 1,2,4,6-cycloheptatetraene (CHTE) within a molecular container was studied with AM1 method, and single point energies for all stationary points were evaluated by B3LYP and HF methods. The conversion potential barrier for the encapsulation complex became smooth when compared with that for the rearrangement in free state. The influences of the inner phase of the molecular container on the conversion process were discussed.  相似文献   

3.
The influences of temperature and CO2 pressure on the corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2 were investigated with the aid Mott-Schottky analysis and scanning electron microscopy(SEM) of electrochemical impedance spectroscopy(EIS), The results indicate that alloy G30 is in the passive state in the stratum water, which is related to the formation of the passive film on its surface. This passive film can significantly protect the substrate from further corrosion. And the film protection is enhanced with decreasing temperature and CO2 pressure. Auger electron spectrometry(AES) and X-ray photoelectron spectrometry(XPS) results reveal that the passive film shows the double-layer structure, i.e. the inner chromium oxide and the outer iron/nickel spinel oxides or hydroxides with Mo oxides dispersing throughout the inner and outer scale.  相似文献   

4.
Laser-induced fluorescence excitation spectra and dispersed fluorescence spectra of cobalt sulfide (COS) have been recorded in the energy range of 22400-24400 cm-1 (corresponding to 446-409 nm). A new electronic transition progression with six vibronic bands, stemming from the X4AT/2 state of CoS, was identified and assigned to be [24.0014AT/2-X4A7/2. The new observed 4A state most probably originates from the core[10a2][47r3][lla2][153][57r3] electronic configuration. Strong perturbations are found to extensively exist in the transition bands of this new state. The rotational constants and lifetimes of these bands have been determined.  相似文献   

5.
Mbius container molecules C64H8,C60N4H4,and C58N6H2 with topological one-sided characteristics were constructed at the first time by imitating natural trumpet shells.The structure is an open cage with an inner hexagonal bridge.The bridge joints the outer and inner surfaces of the cage to form a new one-sided Mbius structure.The optimized structures of the three molecules in the singlet(the ground state),triplet and quintet states are obtained using the density functional theory(B3LYP).For the ground state...  相似文献   

6.
A novel degradable pH-sensitive hydrogel with pendent carboxyl groups was designed and synthesized from ethylenediaminetetraacetic dianhydride (EDTAh) and butanediamine (BDA) with dicyclohexylcarbodiimide (DCC) as a condensating agent and BDA as a crosslinking agent. The obtained polymers were characterized by ^13C NMR, ^1H NMR and FTIR. The swelling experiments of the hydrogel in pH 3, 7, and 12 media indicated much higher swelling ratio in pH 12 media than in pH 3 and pH 7 media, exhibiting sound pH sensitivity. The pH sensitivity of this type of hydrogel may be regulated through controlling the type and the dose of the crosslinking agent.  相似文献   

7.
A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reaction. The molecular weight and polydispersity (PD) of the resulting polymers increased with increasing reaction time. In the presence of core molecules (bisphenol A and 1,3,5-trihydroxybenzene), which have the similar molecular backbones to the reactive monomer, the molecular weight could be controlled by varying the core-to-monomer ratio. Incorporation of a very small amount of core molecules could lead to a higher molecular weight as compared with that without the addition of core molecules. However, when the core content reached certain extent, the molecular weight would decrease with the further increase in the core content. A new similar behavior of control over the PD was also obtained. The resulting polymers were characterized by ^1H-NMR, ^13C-NMR, FT-IR, and GPC.  相似文献   

8.
In order to prepare hollow latex particles with optimum morphology based on osmotic swelling principle, three- layer core/shell latex particles with 40 wt% MAA in the core were first prepared via multistep seeded emulsion copolymerization, in which monomers were added by a semi-continuous process with monomer addition under two different forms: pure monomers' mixture (monomer addition), and pre-emulsified monomers (pre-emulsion addition). Then, the hollow latex particles with different morphologies were obtained after alkali post-treatment. Influences of the monomer feeding mode on the emulsion polymerization and the particle morphology were investigated. Results showed that the pre- emulsion addition could significantly improve the polymerization stability in each step, and greatly enhance the uniformity of shell encapsulation. The sizes of the core and core/shell latex particles obtained by the pre-emulsion addition were smaller and more uniform than those synthesized by the monomer addition, and the hollow latex particles with intact morphology were generated by alkali post-treating of the core/shell latexes prepared from the pre-emulsion addition. As the core size increased, the morphology of the post-treated particles underwent evolution from hollow to collapse. Moreover, the mechanism of the particle morphological evolution was proposed.  相似文献   

9.
The influences of silica volume fraction, electrolyte concentration and pH value upon the stress dependence of elastic modulus G′and viscous modulus G“ were investigated. The results show that the suspension transforms from a liquid-like state to a solid-like state with increasing the volume fraction of silica. Such a solid-like state can be transformed back into a liquid-like state under the application of a larger stress. At the higher volume fraction, the larger critical stress is required to induce the transition from solid-like to liquidlike state. As the electrolyte concentration decreases or pH value increases, the inter-particle force increases,which causes the state transition to occur at a higher stress.  相似文献   

10.
The ultrafast excited state dynamics of trans-4-aminoazobenzene (trans-4-AAB) in ethanol was investigated by femtosecond transient absorption spectroscopy. After being excited to the S2 state by 400 nm, trans-4-AAB decays from the S2 state to the hot S1 state by internal conversion with time constant of -70 fs. The photoisomerization through inversion mechanism on the S1 potential energy surface and the internal conversion from the S1 state to the hot So state are observed, respectively. The average timescale of these two decay pathways is -0.7 ps. And the vibrational cooling of the hot So state of cis- and trans-4- AAB occur with time constants of -4 and N13 ps, respectively. Furthermore, the ultrafast intersystem crossing process are also observed. The timescale of intersystem crossing from the S2 state to the T4 state is about 480 ps while from the S1 state to the T2 state is -180 ps.  相似文献   

11.
Two types of magnetite/PLA composite microbubbles with different magnetite loading sites (magnetite nanoparticles [MNPs] were loaded in shell or core part), named as Fe3O4@Shell and Fe3O4@Cavity microbubbles, were respectively fabricated by an improved W1/O/W2 double emulsification approach and by an interfacial coprecipitation joint double emulsification approach. The preparation parameters were crucial factors for controlling the morphologies and structures of the microbubbles. To clarify the relationship between their structural characteristics and their properties, the T 2-weighted magnetic resonance imaging (MRI) capabilities as well as the sound attenuation behavior of the microbubbles were investigated. The results demonstrate that the encapsulation of MNPs in either the inner cavity or the shell provides improved sound attenuation, the two types of microbubbles provide comparable sound attenuation enhancement properties, whereas Fe3O4@Shell microbubbles exhibit better T 2-weighted MRI capabilities. The T 2 relaxation time decreased from 219.5 to 62.1?ms for the Fe3O4@Cavity microbubbles and from 163.8 to 45.7?ms for the Fe3O4@Shell microbubbles, as the iron concentration increased from 0.05 to 1?mM. In addition, both types of microbubbles exhibit no cytotoxicity to either NRK or BRL-3A metabolic cell cultures. These results suggest that these magnetite-containing microbubbles have great potential as ultrasonic/MR dual contrast imaging agents.  相似文献   

12.
Reactions of a hexadentate ligand N,N,N’,N’-tetrakis(2-hydroxyethyl)ethylenediamine (H4edte) with different iron(III) salts in different solvents yielded three new twisted-saddle Fe12 clusters with adamantane-like [Fe4O6] inner core. Preliminary magnetic studies show that strong intracluster anti-ferromagnetic interaction exists in both 1 and 3, generating the S T = 0 spin ground state.  相似文献   

13.
A method is reported for the first time for the selected-control, large-scale synthesis of monodispersed Fe3O4@C core–shell spheres, chains, and rings with tunable magnetic properties based on structural evolution from eccentric Fe2O3@poly(acrylic acid) core–shell nanoparticles. The Fe3O4@C core–shell spheres, chains, and rings were investigated as anode materials for lithium-ion batteries. Furthermore, a possible formation mechanism of Fe3O4@C core–shell chains and rings has also been proposed.  相似文献   

14.
《Polyhedron》2005,24(16-17):2550-2556
We have studied the iron–sulfur cluster systems which model an active site of ferredoxin proteins by using the first-principles electronic structure calculation. The modeled molecule is a complex between the (Fe2S2)2+ core and the amino acid residues which surround the core. The electronic structure of oxidized state for the molecules is presented. The antiferromagentic arrangement for Fe atomic magnetizations was obtained as the ground state. The spin polarized state of the half-filled Fe 3d orbitals is consistent with the formal valence of Fe3+. The induced spin density on the cysteine S atoms was found to be parallel to the direction of magnetization on the nearest Fe atom. The hybridized states consisting of N 2p and C 2p orbitals at the side chain of Arg residue appeared just above the highest occupied molecular orbital level for the free standing peptide.  相似文献   

15.
《Solid State Sciences》2012,14(9):1327-1332
The hardness and elastic stiffness of Y3Al5O12 (YAG) were investigated by first-principles calculations and experiments. The mechanical properties including the second-order elastic coefficients, hardness, bulk modulus, Young's modulus and shear modulus were calculated by density functional theory (DFT). The calculated results were in good agreement with the experimental values. The hardness of YAG is mainly attributed to Altet–O bonds. The elastic anisotropy of YAG was discussed. Zener anisotropy parameter of YAG is close to unit and its universal anisotropy index is very close to zero, which indicates the structure of YAG is nearly centrosymmetric. The longitudinal and transverse sound velocities and Debye temperature were also investigated.  相似文献   

16.
A bifunctional oxygen electrocatalyst composed of iron carbide (Fe3C) nanoparticles encapsulated by nitrogen doped carbon sheets is reported. X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure revealed the presence of several kinds of active sites (Fe?Nx sites, N doping sites) and the modulated electron structure of nitrogen doped carbon sheets. Fe3C@N‐CSs shows excellent oxygen evolution and oxygen reduction catalytic activity owing to the modulated electron structure by encapsulated Fe3C core via biphasic interfaces electron interaction, which can lower the free energy of intermediate, strengthen the bonding strength and enhance conductivity. Meanwhile, the contribution of the Fe?Nx sites, N doping sites and the effect of Fe3C core for the electrocatalytic oxygen reaction is originally revealed. The Fe3C@N‐CSs air electrode‐based zinc‐air battery demonstrates a high open circuit potential of 1.47 V, superior charge‐discharge performance and long lifetime, which outperforms the noble metal‐based zinc‐air battery.  相似文献   

17.
A novel antimicrobial nanohybrid based on near‐infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO–Fe3O4–PEI) is prepared and then loaded with core–shell–shell Au–Ag–Au nanorods to construct the nanohybrid rGO–Fe3O4–Au–Ag–Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic‐separation capability that is attributable to Fe3O4. The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au–Ag–Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL?1 of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×108 cfu mL?1) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm?2) for 10 min. With magnetic separation, 30 μg mL?1 of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.  相似文献   

18.
Soluble methane monooxygenase (sMMO) is an enzyme that converts alkanes to alcohols using a di(μ‐oxo)diiron(IV) intermediate Q at the active site. Very large kinetic isotope effects (KIEs) indicative of significant tunneling are observed for the hydrogen transfer (H‐transfer) of CH4 and CH3CN; however, a relatively small KIE is observed for CH3NO2. The detailed mechanism of the enzymatic H‐transfer responsible for the diverse range of KIEs is not yet fully understood. In this study, variational transition‐state theory including the multidimensional tunneling approximation is used to calculate rate constants to predict KIEs based on the quantum‐mechanically generated intrinsic reaction coordinates of the H‐transfer by the di(μ‐oxo)diiron(IV) complex. The results of our study reveal that the role of the di(μ‐oxo)diiron(IV) core and the H‐transfer mechanism are dependent on the substrate. For CH4, substrate binding induces an electron transfer from the oxygen to one FeIV center, which in turn makes the μ‐O ligand more electrophilic and assists the H‐transfer by abstracting an electron from the C?H σ orbital. For CH3CN, the reduction of FeIV to FeIII occurs gradually with substrate binding and H‐transfer. The charge density and electrophilicity of the μ‐O ligand hardly change upon substrate binding; however, for CH3NO2, there seems to be no electron movement from μ‐O to FeIV during the H‐transfer. Thus, the μ‐O ligand appears to abstract a proton without an electron from the C?H σ orbital. The calculated KIEs for CH4, CH3CN, and CH3NO2 are 24.4, 49.0, and 8.27, respectively, at 293 K, in remarkably good agreement with the experimental values. This study reveals that diverse KIE values originate mainly from tunneling to the same di(μ‐oxo)diiron(IV) core for all substrates, and demonstrate that the reaction dynamics are essential for reproducing experimental results and understanding the role of the diiron core for methane oxidation in sMMO.  相似文献   

19.
The solid state13C NMR spectra of four13CO enriched carbonyl clusters having a tri-iron metallic core have been analyzed to provide structural and dynamic information. In Fe3(CO)12 (1), the high temperature spectra suggest the occurrence of large amplitude motions of the CO groups around their position at the vertexes of the coordination polyhedron in addition to the motion involving the Fe3-triangle previously detected in the VT-13C MAS spectra.13C and31P NMR data of Fe3(CO)11PPh3 (2) indicates the presence of one molecule in the asymmetric unit in apparent disagreement with the previously reported X-ray data. Furthermore, we show that structural information can be obtained from the chemical shift tensor components readily available from the analysis of the spinning sideband manifold.  相似文献   

20.
Ultrasonic pulse echo-overlap technique at 300 K (9 MHz) has been employed to study the elastic properties of Al3+-substituted CuFe2O4 spinel ferrite system. The longitudinal and transverse wave velocities are used to compute elastic moduli and these are corrected to the zero porosity by employing different models. Contrary to expectation, the magnitude of elastic moduli is found to decrease by 75% with only 30% of Al3+-substitution for Fe3+ in the system. The lowering of elastic stiffness is mainly due to residual stress-induced spontaneous cracking and presence of oxygen vacant sites in the material. The lower value of lattice energy for polycrystalline specimens as compared to their single crystalline counterparts have been explained in the light of an increase degree of disorientation at the grain boundary with Al3+-substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号