首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
The reactions of S + OH → SO + H (1) and SO + OH → SO2 + H (2) were studied in a discharge flow reactor coupled to an EPR spectrometer. The rate constants obtained under the pseudo-first-order conditions with an excess of S or SO were found to be k1 = (6.6 ± 1.4) × 10?11 and k2 = (8.4 ± 1.5) × 10?11 at room temperature. Units are cm3/molec·sec. Besides no reactivity was observed between S and CO2 at 298 K and between CIO and SO2 up to 711 K.  相似文献   

2.
Reactions of CF3Br with H atoms and OH radicals have been studied at room temperature at 1–2 torr pressures in a discharge flow reactor coupled to an EPR spectrometer. The rate constant of the reaction H + CF3Br → CF3 + HBr (1) was found to be k1 = (3.27 ± 0.34) × 10?14 cm3/molec·sec. For the reaction of OH with CF3Br (8) an upper limit of 1 × 10?15 cm3/molec·sec was determined for k8. When H atoms were in excess compared to NO2, used to produce OH radicals, a noticeable reactivity of OH was observed as a result of the reaction OH + HBr → H2O + Br, HBr being produced from reaction (1).  相似文献   

3.
Reactions of OH(v = 1) with HBr, O, and CO have been studied at 295°K using a fast discharge flow apparatus: The reaction O + HBr → OH(v = 1) + Br was used as a source of OH(v = 1), and subsequent chemical reactions of the excited radical were followed using EPR spectroscopy. Rate constants for reactions (2b), (3b), and (6b) were measured as (4.5 ± 1.3) × 10?11, (10.5 ± 5.3) × 10?11, and <5 × 10?12 cm3/molec·sec, respectively. The rate constant for physical deactivation of OH(v = 1) by CO was determined as <4 × 10?13 cm3/molec·sec.  相似文献   

4.
Rate constants for the reactions of O3 and OH radicals with furan and thiophene have been determined at 298 ± 2 K. The rate constants obtained for the O3 reactions were (2.42 ± 0.28) × 10?18 cm3/molec·s for furan and <6 ×10?20 cm3/molec·s for thiophene. The rate constants for the OH radical reactions, relative to a rate constant for the reaction of OH radicals with n-hexane of (5.70 ± 0.09) × 10?12 cm3/molec·s, were determined to be (4.01 ± 0.30) × 10?11 cm3/molec·s for furan and (9.58 ± 0.38) × 10?12 cm3/molec·s for thiophene. There are to date no reported rate constant data for the reactions of OH radicals with furan and thiophene or for the reaction of O3 with furan. The data are compared and discussed with respect to those for other alkenes, dialkenes, and heteroatom containing organics.  相似文献   

5.
The recombination of iodine atoms following the flash photolysis of iodine in the presence of nitric oxide is interpreted through the mechanism with k1 = 3.5 × 109 l.2/mol2·sec; k2 ≈ 1 × 1011 l./mol·sec; k3 = 2.1 × 107 l./mol·sec at 298°K; E3 = 11 kJ/ mol; and ΔH°1 = 76 ± 6 kJ/mol. Lower and upper limits for the equilibrium constant are also established. The absorption spectrum of INO has been extended down to 223 nm and extinction coefficients for the region of 223–310 nm and 360–460 nm have been measured.  相似文献   

6.
Electron pulse radiolysis at ?298°K of 2 atm H2 containing 5 torr O2 produces HO2 free radical whose disappearance by reaction (1), HO2 + HO2 →H2O2 + O2, is monitored by kinetic spectrophotometry at 230.5 nm. Using a literature value for the HO2 absorption cross section, the values k1 = 2.5×10?12 cm3/molec·sec, which is in reasonable agreement with two earlier studies, and G(H) G(HO2) ?13 are obtained. In the presence of small amounts of added H2O or NH3, the observed second-order decay rate of the HO2 signal is found to increase by up to a factor of ?2.5. A proposed kinetic model quantitatively explains these data in terms of the formation of previously unpostulated 1:1 complexes, HO2 + H2O ? HO2·H2O (4a) and HO2 + NH3? HO2·NH3 (4b), which are more reactive than uncomplexed HO2 toward a second uncomplexed HO2 radical. The following equilibrium constants, which agree with independent theoretical calculations on these complexes, are derived from the data: 2×10?20?K4a?6.3 × 10?19 cm3/molec at 295°K and K4b = 3.4 × 10?18 cm3/molec at 298°K. Several deuterium isotope effects are also reported, including kH/kD = 2.8 for reaction (1). The atmospheric significance of these results is pointed out.  相似文献   

7.
A fast discharge flow apparatus equipped for EPR detection of radicals has been used to investigate the reaction O + HBr → OH + Br. At 295°K, measurements showed that more than 97% of all OH produced in this reaction was formed initially in its first vibrationally excited state. Rate constants for physical deactivation of OH(v = 1) by O(3P), Br(2P3/2), H2O, and HBr were measured as (1.45 ± 0.25) × 10?10, (6.4 ± 2.4) × 10?11, (1.35 ± 0.50) × 10?11, and < 10?12 cm3/molec·sec, respectively.  相似文献   

8.
Rate constants for the reaction HO2 + NO2(+ M) = HO2NO2(+ M) have been obtained from direct observations of the HO2 radical using the technique of molecular modulation ultraviolet spectrometry. HO2 was generated by periodic photolysis of Cl2 in the presence of excess H2 and O2, and k1 was determined from the measured concentrations and lifetime of HO2 with NO2 present. k1 increased with pressure in the range of 40–600 Torr, and a simple energy transfer model gave the following limiting second- and third-order rate constants at 283 K: k1 = 1.5 ± 0.5 × 10?12 cm3/molec·sec and k1III = 2.5 ± 0.5 × 10?31 cm6/molec·sec. The ultraviolet absorption spectrum of peroxynitric acid was also recorded in the range of 195–265 nm; it showed a broad feature with a maximum at 200 nm, σmax = 4.4 × 10?18 cm2.  相似文献   

9.
Absolute rate constants and their temperature dependencies were determined for the addition of hydroxymethyl radicals (CH2OH) to 20 mono- or 1,1-disubstituted alkenes (CH2 = CXY) in methanol by time-resolved electron spin resonance spectroscopy. With the alkene substituents the rate constants at 298 K (k298) vary from 180 M?1s?1 (ethyl vinylether) to 2.1 middot; 106 M?1s?1 (acrolein). The frequency factors obey log A/M?1s?1 = 8.1 ± 0.1, whereas the activation energies (Ea) range from 11.6 kJ/mol (methacrylonitrile) to 35.7 kJ/mol (ethyl vinylether). As shown by good correlations with the alkene electron affinities (EA), log k298/M?1s?1 = 5.57 + 1.53 · EA/eV (R2 = 0.820) and Ea = 15.86 ? 7.38 · EA/eV (R2 = 0.773), hydroxymethyl is a nucleophilic radical, and its addition rates are strongly influenced by polar effects. No apparent correlation was found between Ea or log k298 with the overall reaction enthalpy. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Recent experimental results on the thermal decomposition of N2O5 in N2 are evaluated in terms of unimolecular rate theory. A theoretically consistent set of fall-off curves is constructed which allows to identify experimental errors or misinterpretations. Limiting rate constants k0 = [N2] 2.2 × 10?3 (T/300)?4.4 exp(?11,080/T) cm3/molec·s over the range of 220–300 K, k = 9.7 × 1014 (T/300)+0.1 exp(?11,080/T) s?1 over the range of 220–300 K, and broadening factors of the fall-off curve Fcent = exp(-T/250) + exp(?1050/T) over the range of 220–520 K have been derived. NO2 + NO3 recombination rate constants over the range of 200–300 K are krec,0 = [N2] 3.7 × 10?30 (T/300)?4.1 cm6/molec2·s and krec,∞ = 1.6 × 10?12 (T/300)+0.2 cm3/molec·s.  相似文献   

11.
The rate constant for the reaction of Br + O3 → BrO + O2 has been measured at four temperatures from 234 to 360 K by the technique of discharge flow coupled with resonance-fluorescence detection of bromine atoms. The measured rate constants obey the Arrhenius expression k = (9.45 ± 2.48) × 10?12 exp(-659 ± 64/T) cm3/molec·sec (one standard deviation). The results are compared with two previous studies, one of which utilized the flash-photolysis–resonance-fluorescence technique and the other utilized the discharge-flow–mass-spectrometric technique. The result is also discussed from a theoretical point of view.  相似文献   

12.
The kinetics of OH reactions with 1–4 carbon aliphatic thiols have been investigated over the temperature range 252–430 K. OH radicals were produced by flash photolysis of water vapor at λ > 165 nm and detected by time-resolved resonance fluorescence spectroscopy. All thiols investigated react with OH at nearly the same rate; k(298 K) = 3.2–4.6 × 10?11 cm3 molecule?1 s?1, -Eact = 0.6–1.0 kcal/mol, A = 0.6–1.2 × 10?11 cm3 molecule?1 s?1. CH3SH and CH3SD react with OH at identical rates over the entire temperature range investigated. We conclude that the dominant reaction pathway is addition to the sulfur atom.  相似文献   

13.
The rate constant for the reaction Cl + CHClO → HCl + CClO was determined from relative decay rates of CHClO and CH3Cl inthe photolysis of mixtures containing Cl2 (~1 torr), CH3Cl (~1 torr), and O2 (~0.1 torr) in 700 torr N2. In such mixtures CHClO was generated in situ as a principal product prior to complete consumption of O2. The value of k(Cl + CHClO)/k(Cl + CH3Cl) = 1.6 ± 0.2(3σ) combined with the literature value of k(Cl + CH3Cl) = 4.9 × 10?13 cm3/molecule sec gives k(Cl + CHClO) = 7.8 × 10?13 cm3/molecule sec at 298 ± 2 K, in excellent agreement with a previous value of (7.9 ± 1.5) × 10?13 cm3/molecule sec determined by Sanhueza and Heicklen [J. Phys. Chem., 79 , 7 (1975)]. Thus this reaction is approximately 100 times slower than the corresponding reactions of aldehydes and alkanes with comparable C? H bond energies (≤95 kcal/mol).  相似文献   

14.
Gas-phase reactions typical of the Earth’s atmosphere have been studied for a number of partially fluorinated alcohols (PFAs). The rate constants of the reactions of CF3CH2OH, CH2FCH2OH, and CHF2CH2OH with fluorine atoms have been determined by the relative measurement method. The rate constant for CF3CH2OH has been measured in the temperature range 258–358 K (k = (3.4 ± 2.0) × 1013exp(?E/RT) cm3 mol?1 s?1, where E = ?(1.5 ± 1.3) kJ/mol). The rate constants for CH2FCH2OH and CHF2CH2OH have been determined at room temperature to be (8.3 ± 2.9) × 1013 (T = 295 K) and (6.4 ± 0.6) × 1013 (T = 296 K) cm3 mol?1 s?1, respectively. The rate constants of the reactions between dioxygen and primary radicals resulting from PFA + F reactions have been determined by the relative measurement method. The reaction between O2 and the radicals of the general formula C2H2F3O (CF3CH2? and CF3?HOH) have been investigated in the temperature range 258–358 K to obtain k = (3.8 ± 2.0) × 108exp(?E/RT) cm3 mol?1 s?1, where E = ?(10.2 ± 1.5) kJ/mol. For the reaction between O2 and the radicals of the general formula C2H4FO (? HFCH2O, CH2F?HOH, and CH2FCH2?) at T = 258–358 K, k = (1.3 ± 0.6) × 1011exp(?E/RT) cm3 mol?1 s?1, where E = ?(5.3 ± 1.4) kJ/mol. The rate constant of the reaction between O2 and the radicals with the general formula C2H3F2O (?F2CH2O, CHF2?HOH, and CHF2CH2?) at T = 300 K is k = 1.32 × 1011 cm3 mol?1 s?1. For the reaction between NO and the primary radicals with the general formula C2H2F3O (CF3CH2? and CF3?HOH), which result from the reaction CF3CH2OH + F, the rate constant at 298 K is k = 9.7 × 109 cm3 mol?1 s?1. The experiments were carried out in a flow reactor, and the reaction mixture was analyzed mass-spectrometrically. A mechanism based on the results of our studies and on the literature data has been suggested for the atmospheric degradation of PFAs.  相似文献   

15.
The rates of the reactions of hydroxyl radicals (OH) with styrene, α-methylstyrene, and β-methylstyrene have been measured by irradiating mixtures of these aromatic olefins and NO in an environmental chamber at 298 K. Experimental conditions were used whereby the competition of ozone with OH in oxidizing the hydrocarbons could be considered negligible. The rate constant values, obtained by a relative method using isooctane as reference hydrocarbon, are: styrene (5.3 ± 0.5) × 10?11 cm3/molec·s, α-methylstyrene (5.3 ± 0.6) × 10?11 cm3/molec·s, and β-methylstyrene (6.0 ± 0.6) × 10?11 cm3/molec·s. A simplified kinetic treatment of the experimental data shows that styrene and β-methylstyrene are stoichiometrically converted to benzaldehyde, suggesting that OH attack occurs only on the aliphatic moiety of the aromatic olefins. Benzaldehyde was observed to undergo consecutive oxidation by OH, and its maximum formation yield was about 60%. A reaction mechanism is proposed where the primary rate-determining OH attack leads to the formation of 1-hydroxy-2-phenyl-2-ethenyl radicals, from which benzaldehyde is formed through fast intermediate reactions.  相似文献   

16.
The equilibrium I2(g) + 2NO(g) = 2INO(g) has been studied at room temperature by ultraviolet absorption spectroscopy. The equilibrium constant has been measured as Kp = (2.7 ± 0.3) × 10?6 atm?1 at 298 K. Third-law calculations lead to ΔH°f,298 (INO) = 120.0 ± 0.3 kJ/mol. The relative absorption spectrum of INO has been measured between 225 and 300 nm. Quantitative measurements gave ?(λmax = 238 nm) = (1.79 ± 0.5) × 104 L/mol·cm and ?(410 nm) = 234.7 ± 21 L/mol·cm.  相似文献   

17.
Pyrolytic decay of carbon diselenide was monitored by ultraviolet absorption spectroscopy in reflected shock waves in the temperature range of 1600–2600°K. The temperature dependence of the absorption coefficient of CSe2 at 2308 Å was determined and was used to provide kinetic information along with a deconvolution procedure which accounted for and removed systematic distortions of the fast time-resolved absorbance profile. For temperatures of 1600–2600°K and argon densities of 1.5–7.0 × 10?5 mol/cm3 dilute (1.0–9.0 × 10?9 mol/cm3) CSe2 pyrolyzed with measured first-order decay rates in the range of log10 k1 (sec?1) = 3.0?5.7; at midrange (2100°K and 4.3 × 10?5 mol/cm3 in Ar) k1 ≈ 3 × 104 sec?1. The decay probably occurs via a unimolecular low-pressure process, first order in both CSe2 and Ar, for which k2 ± 109 cm3/mol·sec at 2100°K. The deconvoluted data yield Arrhenius activation energies of 53.2 kcal/mol under second-order treatment, but the activation energy is less reliable than the general magnitude of the rate constant. A comparison of CSe2 with other molecules which are isoelectronic in their valence shells (CO2, CS2, OCS, and N2O) is made.  相似文献   

18.
The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

19.
The mutual combination reaction is proposed as the rate-limiting step in the removal of ClO radicals at moderate pressures. The third--order rate constants measured at room temperature were k1(Ar) = 3.51 ± 0.14 × 109 l2/mol2·ec; k1(He) ≈ 2.8 × 109 l2/mol2·sec, and k1(O2) ≈ 7.9 × 109 l2/mol2·sec. There is also an independent second-order reaction for which k3 ≈ 8 × 106 l/mol·sec. A new absorption spectrum has been observed in the ultraviolet and attributed to Cl2O2. The extinction coefficient for Cl2O2 has been measured at six wavelengths, and, between 292 and 232 nm, it increases from 0.4 × 103 to 2.9 × 103 l/mol·cm. In the presence of the chlorine atom scavengers OClO or Cl2O, Cl2O2 exists in equilibrium with ClO. The equilibrium constant Ke1 = 3.1 ± 0.1 × 106 l/mol at 298 K, and, with ΔS10 estimated to be ?133 ± 11 J/K·mol, ΔH10 = ?69 ± 3 kJ/mol and ΔHf0(Cl2O2) = 136 ± 3 kJ/mol.  相似文献   

20.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号