首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mass spectrometry method has been developed using the Quality by Design (QbD) principle. Direct analysis in real time mass spectrometry (DART-MS) was adopted to analyze a pharmaceutical preparation. A fishbone diagram for DART-MS and the Plackett-Burman design were utilized to evaluate the impact of a number of factors on the method performance. Multivariate regression and Pareto ranking analysis indicated that the temperature, determined distance, and sampler speed were statistically significant (P < 0.05). Furthermore, the Box-Behnken design combined with response surface analysis was then employed to study the relationships between these three factors and the quality of the DART-MS analysis. The analytical design space of DART-MS was thus constructed and its robustness was validated. In this presented approach, method performance was mathematically described as a composite desirability function of the critical quality attributes (CQAs). Two terms of method validation, including analytical repeatability and method robustness, were carried out at an operating work point. Finally, the validated method was successfully applied to the pharmaceutical quality assurance in different manufacturing batches. These results revealed that the QbD concept was practical in DART-MS method development. Meanwhile, the determined quality was controlled by the analytical design space. This presented strategy provided a tutorial to the development of a robust QbD-compliant mass spectrometry method for industrial quality control.
Figure
?  相似文献   

2.
Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers’ perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.
Figure
A broad multiplex real‐time PCR method for the detection and identification of GMOs  相似文献   

3.
We developed a procedure to determine the “identification power” of an LC-MS/MS method operated in the MRM acquisition mode, which is related to its selectivity. The probability of any compound showing the same precursor ion, product ions, and retention time as the compound of interest is used as a measure of selectivity. This is calculated based upon empirical models constructed from three very large compound databases. Based upon the final probability estimation, additional measures to assure unambiguous identification can be taken, like the selection of different or additional product ions. The reported procedure in combination with criteria for relative ion abundances results in a powerful technique to determine the (un)certainty of the selectivity of any LC-MS/MS analysis and thus the risk of false positive results. Furthermore, the procedure is very useful as a tool to validate method selectivity.
Figure
  相似文献   

4.
We report the development of an indirect ELISA procedure for specific identification of chicken-egg yolk and animal glues in painting micro-samples. The results presented integrate previously published work on ELISA recognition of bovine β-casein and chicken ovalbumin in painting materials. The integrated final ELISA procedure—optimised for protein extraction, immuno-reagent concentrations, blocking solution, incubation time, and temperature—enables multiplex identification, in single samples, of proteinaceous materials, i.e. chicken-egg yolk and albumen, animal glues, and bovine milk and/or casein, mainly used by painters in the past. The procedure has been systematically tested on laboratory models of mural and easel paintings, both naturally and artificially aged, to assess possible inhibitory effects on the immuno-reaction caused by inorganic painting materials (pigments and substrates) and by protein degradation resulting from aging processes. Real samples from case studies, which had previously been investigated and characterised by spectroscopy and chromatography, were successfully studied by use of the developed ELISA procedure. The commercial availability of all the immuno-reagents used, the affordable analytical equipment, and the specificity, sensitivity, and rapidity of ELISA make this method very attractive to diagnostic laboratories in the field of cultural heritage science. Possible further developments to the analytical potential of this technique include improvement of antibody performance and inclusion of other classes of bio-molecules as analytical targets.
Figure
An ELISA indirect procedure is reported for the specific identification of chicken egg-yolk and animal glues in micro-samples from historical paintings; the method was experimented on laboratory models of mural and easel paintings, both naturally and artificially aged  相似文献   

5.
Thirty-one populated printed wiring boards, covering a range of 30 years of construction, and originating from various electronic devices, were investigated using different analytical procedures. Noble, precious and rare metals, as well as environmentally relevant elements were identified by EDXRF, and lead and the flame retardant (FR) indicator bromine were localised by means of microbeam EDXRF. A GC/MS procedure was developed to identify and quantify FR substances. Several sample preparation techniques were applied, optimised and compared. The method of first choice was ultrasonic extraction because it provided the best compromise between effort, cost and quality of the analytical results. Altogether, a wide variety of elements of concern, and halogenated and phosphate-based FRs were found in the investigated boards. Their occurrence is partially related to the origin and/or year of construction.
Figure
?  相似文献   

6.
An introduction to the principle and possibilities of the new method of circular dichroism laser mass spectrometry is given and its state of development is reviewed. This method allows enantiosensitive, mass-selective probing of chiral molecules. It is based on the combination of resonance-enhanced multiphoton ionization with circularly polarized light and specially modified time-of-flight mass spectrometry. As an example, application to carbonyls is presented.
Figure
The combination of resonance enhanced multiphoton ionization and circular dichroism performed in a time-of-flight mass spectrometer allows mass selective enantio-sensitive spectroscopy with new features for chiral analysis  相似文献   

7.
Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6?years in (bio)analytical chemistry in general, and in biosensing in particular.
Figure
Carbon nanotubes and graphene in analytical applications  相似文献   

8.
Emerging contaminants are suspected to cause adverse effects in humans and wildlife. Aquatic ecosystems are continuously contaminated by agricultural and industrial sources. To establish a causality relationship between the occurrence of contaminants in the environment and disease, experiments including all environmental matrices must be performed. Consequently, the current analytical tools must be improved. A new multi-residue method for analysing 15 emerging pollutants in sediments based on the Quick, Easy, Cheap, Effective, Rugged and Safe approach is reported. The development of such a multirisque, inter-family method for sediment including pharmaceuticals, pesticides, personal care products and plasticizers is reported for the first time. The procedure involves salting-out liquid–liquid extraction using acetonitrile and clean-up with dispersive solid phase extraction, followed by liquid chromatography coupled with tandem mass spectrometry. The validated analytical procedure exhibited recoveries between 40 and 98 % for every target compound. This methodology facilitated the determination of pollutant contents at nanogram-per-gram concentrations.
Figure
?  相似文献   

9.
To advance Fourier transform mass spectrometry (FTMS)-based molecular structure analysis, corresponding development of the FTMS signal processing methods and instrumentation is required. Here, we demonstrate utility of a least-squares fitting (LSF) method for analysis of FTMS time-domain (transient) signals. We evaluate the LSF method in the analysis of single- and multiple-component experimental and simulated ion cyclotron resonance (ICR) and Orbitrap FTMS transient signals. Overall, the LSF method allows one to estimate the analytical limits of the conventional instrumentation and signal processing methods in FTMS. Particularly, LSF provides accurate information on initial phases of sinusoidal components in a given transient. For instance, the phase distribution obtained for a statistical set of experimental transients reveals the effect of the first data-point problem in FT-ICR MS. Additionally, LSF might be useful to improve the implementation of the absorption-mode FT spectral representation for FTMS applications. Finally, LSF can find utility in characterization and development of filter-diagonalization method (FDM) MS.
Figure
?  相似文献   

10.
Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted by esterases to dabigatran (DAB), a direct inhibitor of thrombin. To elucidate the esterase-mediated metabolic pathway of DABE, a high-performance liquid chromatography/mass spectrometry based metabolite identification and semi-quantitative estimation approach was developed. To overcome the poor full-scan sensitivity of conventional triple quadrupole mass spectrometry, precursor–product ion pairs were predicted to search for the potential in vitro metabolites. The detected metabolites were confirmed by the product ion scan. A dilution method was introduced to evaluate the matrix effects on tentatively identified metabolites without chemical standards. Quantitative information on detected metabolites was obtained using “metabolite standards” generated from incubation samples that contain a high concentration of metabolite in combination with a correction factor for mass spectrometry response. Two in vitro metabolites of DABE (M1 and M2) were identified, and quantified by the semi-quantitative estimation approach. It is noteworthy that CES1 converts DABE to M1 while CES2 mediates the conversion of DABE to M2. M1 and M2 were further metabolized to DAB by CES2 and CES1, respectively. The approach presented here provides a solution to a bioanalytical need for fast identification and semi-quantitative estimation of CES metabolites in preclinical samples.
Figure
The scheme of the semi-quantitative estimation approach  相似文献   

11.
12.
We show here that baseline separation of dansylated estrone, 17β-estradiol, and 17α-estradiol can be done, contrary to previous reports, within a short run time on a single RP-LC analytical column packed with particles bonded with phenyl-hexyl stationary phase. The chromatographic method coupled with isotope dilution tandem MS offers a simple assay enabling the simultaneous analysis of these analytes. The method employs 13C-labeled estrogens as internal standards to eliminate potential matrix effects arising from the use of deuterated estrogens. The assay also offers adequate accuracy and sensitivity to be useful for biological samples. The practical applicability of the validated method is demonstrated by the quantitative analyses of in vivo samples obtained from rats treated with Premarin®.
Figure
Quantification of estrogens from rat samples by LC–MS/MS  相似文献   

13.
Commercial poly(vinyl acetate) (PVAc) paint formulations for artists include a number of compounds in addition to the PVAc polymer and pigments to improve the physical and chemical properties of the resulting product. Among the most common additives are surfactants, coalescing agents, defoamers, freeze–thaw agents and thickeners. These products significantly influence the behaviour of the dried film. Nevertheless, they are usually difficult to detect with conventional analytical methods given their low concentration. In order to identify these additives, present in the dried film as minor components, an analytical method based on in situ thermally assisted pyrolysis–silylation gas chromatography–mass spectrometry (GC-MS) using hexamethyldisilazane as a derivatisation reagent is proposed. This method improves the conventional GC-MS analysis performed by direct pyrolysis and enables the simultaneous identification of the PVAc binding medium and the additives included by the manufacturer in the commercial paint. Five different commercial PVAc paints have been analysed, namely, armour green, burnt umber, oriental red, raw umber and white from Flashe®. Internal plasticiser VeoVa consisting of C10 fatty acids with highly branched chains has been recognised from the MS spectra. On the other hand, the differences found in the additive content of the studied paints, in particular the poly(ethylene glycol)-type surfactant, are in good agreement with their mechanical properties.
Figure
Picture of armour green Flashe® paint sample breaking in the mechanical tester’s gauge. The photo evidences the type of break these samples experience. Rather than a clean break, the sample experiences several simultaneous fractures with a saw-tooth-like pattern  相似文献   

14.
Natural extracts used by the fragrance and cosmetics industries, namely essential oils, concretes, resinoids, and absolutes, are produced from natural raw materials. These are often cultivated by use of monoculture techniques that involve the use of different classes of xenobiotica, including pesticides. Because of these pesticides’ potential effect on public health and the environment, laws regarding permitted residual levels of pesticides used in cultivation of raw materials for fragrance and cosmetic products are expected to become stricter. The purpose of this review is to present and classify pesticides commonly used in the cultivation of these natural raw materials. We will summarize the most recent regulations, and discuss publications on detection of pesticides via chemical analysis of raw natural extracts. Advances in analytical chemistry for identification and quantification of pesticides will be presented, including both sample preparation and modern separation and detection techniques, and examples of the identification and quantification of individual pesticides present in natural extracts, for example essential oils, will be provided.
Figure
The multidimensional gas chromatogramm depicts coelution of molecular ingredients of a rose essential oil spiked with an ethion pesticide  相似文献   

15.
A novel facile method has been established for rapid on-site detection of antidiabetes chemicals used to adulterate botanical dietary supplements (BDS) for diabetes. Analytes and components of pharmaceutical matrices were separated by thin-layer chromatography (TLC) then surface-enhanced Raman spectroscopy (SERS) was used for qualitative identification of trace substances on the HPTLC plate. Optimization and standardization of the experimental conditions, for example the method used for preparation of silver colloids, the mobile phase, and the concentration of colloidal silver, resulted in a very robust and highly sensitive method which enabled successful detection when the amount of adulteration was as low as 0.001 % (w/w). The method was also highly selective, enabling successful identification of some chemicals in extremely complex herbal matrices. The established TLC–SERS method was used for analysis of real BDS used to treat diabetes, and the results obtained were verified by liquid chromatography–triple quadrupole mass spectrometry (LC–MS–MS). The study showed that TLC–SERS could be used for effective separation and detection of four chemicals used to adulterate BDS, and would have good prospects for on-site qualitative screening of BDS for adulterants.
Figure
Experimental procedure of TLC-SERS method  相似文献   

16.
Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs.
Figure
NIST SRMs 1946 Lake Superior Fish Tissue and 1947 Lake Michigan Fish Tissue  相似文献   

17.
The rapid development of protein-based pharmaceuticals highlights the need for robust analytical methods to ensure their quality and stability. Among proteins used in pharmaceutical applications, an important and ever increasing role is represented by monoclonal antibodies and large proteins, which are often modified to enhance their activity or stability when used as drugs. The bioactivity and the stability of those proteins are closely related to the maintenance of their complex structure, which however are influenced by many external factors that can cause degradation and/or aggregation. The presence of aggregates in these drugs could reduce their bioactivity and bioavailability, and induce immunogenicity. The choice of the proper analytical method for the analysis of aggregates is fundamental to understand their (size) dimensional range, their amount, and if they are present in the sample as generated by an aggregation or as an artifact due to the method itself. Size exclusion chromatography is one of the most important techniques for the quality control of pharmaceutical proteins; however, its application is limited to relatively low molar mass aggregates. Among the techniques for the size characterization of proteins, field-flow fractionation (FFF) represents a competitive choice because of its soft mechanism due to the absence of a stationary phase and application in a broader size range, from nanometer- to micrometer-sized analytes. In this paper, the microcolumn variant of FFF, the hollow-fiber flow FFF, was online coupled with multi-angle light scattering, and a method for the characterization of aggregates with high reproducibility and low limit of detection was demonstrated employing an avidin derivate as sample model.
Figure
HF5-UV-MALS of therapeutic proteins: aggregation study  相似文献   

18.
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium graminearum on maize and barley. Because most current methods of ZEN detection rely on the use of low-stability antibodies or expensive equipment, we sought to develop a rapid, low-cost determination method using aptamers instead of antibodies as the specific recognition ligands. This work describes the isolation and identification of single-stranded DNA (ssDNA) aptamers recognizing ZEN using the modified systematic evolution of ligands by exponential enrichment methodology based on magnetic beads. After 14 rounds of repeated selection, a highly enriched ssDNA library was sequenced and 12 representative sequences were assayed for their affinity and specificity. The best aptamer, 8Z31, with a dissociation constant (K d) of 41?±?5 nM, was successfully applied in the specific detection of ZEN in binding buffer and in real samples based on a magnetic separation/preconcentration procedure. This analytical method provided a linear range from 3.14?×?10?9 to 3.14?×?10?5 M for ZEN, and the detection limit was 7.85?×?10?10 M. The selected aptamers are expected to be used in the potential development of affinity columns, biosensors, or other analytical systems for the determination of ZEN in food and agricultural products.
Figure
Determination of dissociation constant (K d) and specificity of aptamers recognizing zearalenone  相似文献   

19.
Specific and sensitive analysis to reveal and monitor the wide variety of chemical contaminants polluting all environment compartments, feed, and food is urgently required because of the increasing attention devoted to the environment and health protection. Our research group has been involved in monitoring the presence and distribution of agrochemicals by monitoring beehives distributed throughout the area studied. Honeybees have been used both as biosensors, because the pesticides affect their viability, and as “contaminant collectors” for all environmental pollutants. We focused our research on the development of analytical procedures able to reveal and quantify pesticides in different samples but with a special attention to the complex honeybee matrix. Specific extraction and purification procedures have been developed and some are still under optimization. The analytes of interest were determined by gas or liquid chromatographic methods and by compound-specific or group-specific immunoassays in the ELISA format, the analytical performance of which was improved by introducing luminescence detection. The range of chemiluminescent immunoassays developed was extended to include the determination of completely different pollutants, for example explosives, volatile organic compounds (including benzene, toluene, ethylbenzene, xylenes), and components of plastics, for example bisphenol A. An easier and portable format, a lateral flow immunoassay (LFIA) was added to the ELISA format to increase application flexibility in these assays. Aspects of the novelty, the specific characteristics, the analytical performance, and possible future development of the different chromatographic and immunological methods are described and discussed.
Fig
Map of a territory monitored by using honeybees, showing the areas covered by each beehive station (circles) and thedifferent agricultural products included in it (different colours).  相似文献   

20.
Microextraction of organic or inorganic analytes using solidified floating drops of organic solvents is a fairly new method that is simple and rapid, and requires only small quantities of solvents and reagents. This review (with 109 references) covers published work up to Sep. 2012, and describes how the method was combined with analytical techniques such as GC, HPLC, ICP-OES and electrothermal atomic absorption spectrometry. We discuss basic principles and the main parameters that affect the extraction efficiency, and give specific applications of the technique.
Figure
Schematic diagram of liquid-phase microextraction based on solidified floating drops of organic solvents  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号